
Cooperative Multi-Robot Sampling-Based Motion Planning with Dynamics

Duong Le and Erion Plaku
Department of Electrical Engineering and Computer Science

Catholic University of America, Washington DC, 22064

Abstract

This paper develops an effective, cooperative, and
probabilistically-complete multi-robot motion planner.
The approach takes into account geometric and differential
constraints imposed by the obstacles and the robot dynamics
by using sampling to expand a motion tree in the composite
state space of all the robots. Scalability and efficiency
is achieved by using solutions to a simplified problem
representation that does not take dynamics into account to
guide the motion-tree expansion. The heuristic solutions are
obtained by constructing roadmaps over low-dimensional
configuration spaces and relying on cooperative multi-agent
graph search to effectively find graph routes. Experimental
results with second-order vehicle models operating in
complex environments, where cooperation among the
robots is required to find solutions, demonstrate significant
improvements over related work.

Introduction
An increasing number of robotic applications, ranging from
exploration to search-and-rescue, require a team of robots
to navigate in unstructured, obstacle-rich, environments. A
fundamental component of enhancing the autonomy for a
team of robots is the ability to plan dynamically-feasible
motions that enable each robot to reach its destination while
avoiding collisions with obstacles and other robots.

Multi-robot motion planning poses significant challenges.
The planned motions must not only avoid collisions but also
obey the robot dynamics, which constrain, for example, its
velocity, direction, turning radius, and acceleration. This is
challenging since motion planning even for one robot is
PSPACE-complete (Reif 1979) when considering only colli-
sion avoidance and becomes undecidable when coupled with
differential constraints imposed by the dynamics (Branicky
1995). Moreover, in many scenarios, the robots need to co-
operate to avoid deadlock, for example, when blocking each
other from reaching the corresponding destinations.

Multi-robot approaches can be divided based on whether
the geometric and differential constraints are respected: (i)
points over graphs with no dynamics, (ii) geometric shapes
but no dynamics, and (iii) geometric shapes and dynamics.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Each robot, whose dynamics are given by second-
order differential equations, needs to reach its goal (Gi for
robot i) while avoiding collisions with obstacles and other
robots. In this and many other scenarios, the robots need
to coordinate their motions to avoid blocking each other.
Videos of solutions obtained by our approach on this and
other scenes can be found at https://goo.gl/sQ6irb. Figure
best viewed in color and on screen.

Multi-robot planning for point robots with no dynamics
has often been studied in the context of multi-agent pathfind-
ing over graphs. Cooperative approaches often plan paths for
the agents separately, and repair those paths when conflicts
arise (Silver 2005; Jansen and Sturtevant 2008). Global ap-
proaches often search over the composite space of all the
agents. The conflict-based search avoids operating over the
composite space by maintaining a search tree that represents
the conflicts that arise among the agents (Sharon et al. 2015).
Other approaches employ auctions (Amir, Sharon, and Stern
2015) or answer-set programming (Erdem et al. 2013).

When considering the robot geometries but not the dy-
namics, sampling-based approaches have often been used.
Centralized approaches operate over the composite con-
figuration space, treating the robots as one system. This
makes it possible to use any sampling-based approach, e.g.,
PRM (Kavraki et al. 1996), RRT (LaValle and Kuffner 2001),
but does not scale well due to the high-dimensionality of the
composite configuration space. To improve the scalability of
PRM, the composite roadmap can be maintained implicitly

as a product of the individual roadmaps over each configu-
ration space (Solovey, Salzman, and Halperin 2015). Decou-
pled approaches plan the robot paths separately, and then use
velocity tuning to coordinate the paths (Choset et al. 2005)
or subdimensional expansion to repair the paths (Wagner,
Kang, and Choset 2012). Prioritized approaches also plan
the robot paths separately, but treat the planned paths for
robots 1, . . . , i − 1 as moving obstacles when planning the
path for the i-th robot. Decoupled or prioritized approaches
cannot guarantee completeness, since coordination is not al-
ways possible and previously planned paths may make it im-
possible for the next robot to reach its destination.

When considering the robot geometries and the dynamics,
sampling-based motion planners often expand a motion tree.
Roadmaps cannot generally be used since each roadmap
edge requires exact steering to generate a dynamically-
feasible trajectory that connects its states. This gives rise to
two-boundary value problems, which can be solved analyti-
cally only in limited cases, while numerical methods are ex-
pensive (Keller 1992; Cheng, Frazzoli, and LaValle 2008). A
motion tree is incrementally expanded from the initial state
by adding collision-free and dynamically-feasible trajecto-
ries as branches (LaValle and Kuffner 2001; Plaku 2015;
Şucan and Kavraki 2012). Exact steering is not needed since
each branch is generated by applying control actions and
numerically integrating the differential constraints. Motion-
tree planners can be used in a decoupled, prioritized, or cen-
tralized setting to plan for multiple robots. However, due to
the complexity of the problem, there is a significant degra-
dation in planning runtime as the number of robots is in-
creased.

Contribution This paper develops an efficient, cooper-
ative, and probabilistically-complete multi-robot motion
planner that takes into account geometric and differential
constraints imposed by the obstacles and the robot dynamics
by expanding a motion tree in the composite state space of
all the robots. Scalability and efficiency is achieved by using
solutions to a simplified problem representation that does
not take dynamics into account. The heuristic solutions are
obtained by constructing roadmaps over low-dimensional
configuration spaces and relying on cooperative multi-agent
graph search to effectively find graph routes. The motion
tree is partitioned into equivalence classes based on a map-
ping from robot states to roadmap vertices. Each equivalence
class is associated with a heuristic cost based on the length of
the roadmap routes for each robot to reach its goal. To pro-
mote efficiency, priority is given to expansions from equiva-
lence classes with small heuristic costs. When the expansion
fails to make progress, the corresponding equivalence class
is penalized in order to promote the discovery of alternative
routes to the goal. Experimental results with second-order
vehicle models operating in complex environments, where
cooperation among the robots is required to find solutions,
demonstrate significant speedups over related work.

The proposed approach leverages the notion of using
discrete search to guide the motion-tree expansion (Plaku,
Kavraki, and Vardi 2010; Kiesel, Burns, and Ruml 2012;
Le and Plaku 2014; Plaku 2015). These related approaches,

however, have been designed for a single robot. It remains
open to effectively extend these approaches to multiple
robots. Drawing from Solovey et al., (2015), the compos-
ite roadmap is not constructed explicitly but rather is main-
tained implicitly via the edges function which combines the
individual roadmaps. This related work does not take dy-
namics into account, so it ends by using graph search over
the implicit roadmap. In distinction, our work takes dy-
namics into account and uses graph paths over the implicit
roadmap as heuristics to guide the motion-tree expansion.

The proposed approach, as other sampling-based motion
planners, assumes a known map of the environment, no un-
certainty in the executed actions, and no noise. When a map
is not available or when executed in a real robot, sampling-
based motion planners are commonly used in a replanning
framework. This paper does not focus on replanning, but the
approach can be used with any replanning framework for
sampling-based motion planners.

Problem Formulation
This section defines the robot model, motion trajectories,
and the multi-robot motion-planning problem.

Robot Model and Motion Trajectory
Each robot model is defined by its geometric shape Pi, state
space Si, action space Ai, and motion equations fi. Si con-
sists of a set of variables that describe the robot state, such as
position, orientation, steering angle, and velocity.Ai defines
the control actions that can be applied to the robot, such as
setting the acceleration and steering rate. The motion equa-
tions encapsulate the underlying robot dynamics and are of-
ten expressed as a set of differential equations

ṡ = fi(s, a), (1)
which describe how the state s ∈ Si changes when applying
the control action a ∈ Ai. The new state snew ∈ S, obtained
by applying a to s for one time step dt, is computed by

snew ← SIMULATE(s, a, fi, dt), (2)
which numerically integrates fi, e.g., via Runge-Kutta.

As an example, the state s = (x, y, θ, ψ, v) of the vehicle
model used in the experiments defines the position (x, y),
orientation θ, steering angle ψ, and velocity v. The vehicle
is controlled by setting the acceleration aacc and steering
rate aω . The motion equations f are defined as

ẋ = v cos(θ) cos(ψ), ẏ = v sin(θ) cos(ψ), (3)

θ̇ = v sin(ψ)/L, v̇ = aacc, ψ̇ = aω, (4)
where L is the distance between the back and front wheels.

A dynamically-feasible trajectory ζi : {1, . . . , `} → Si
is defined by a start state s ∈ Si and a sequence of control
actions 〈a1

i , . . . , a
`−1
i 〉, where aji ∈ Ai. The trajectory ζi is

obtained by starting at s and applying the control actions in
succession, i.e., ζi(1) = s and ∀j ∈ {2, . . . , `}:

ζi(j) = SIMULATE(ζi(j − 1), aj−1
i , fi, dt). (5)

To facilitate the presentation, POS(s) and ORIENTATION(s)
denote the position and orientation components of a state
s ∈ Si, and PLACEMENT(Pi, s) denotes the placement of
the shape Pi according to POS(s) and ORIENTATION(s).

Multi-Robot Motion-Planning Problem
The environment in which the robots operate is defined by its
bounding boxW and obstacles O = {O1, . . . ,Om}, where
Oj ⊆ W . LetM = {M1, . . . ,Mn} denote the set of the
robot models, whereMi = 〈Pi,Si,Ai, fi, s

init
i ,Gi〉 defines

the i-th robot in terms of its geometric shape Pi, state space
Si, action spaceAi, motion equations fi, initial state sinit

i ∈
Si, and goal region Gi ⊆ W . Let dt denote the time step.

Let COLLISION : S1 × . . . × Sn → {false,true}
denote the collision-checking function. Given a composite
state 〈s1, . . . , sn〉, where si denotes the state of the i-th
robot, COLLISION(s1, . . . , sn) = false if and only if

• each robot is inW , i.e.,
⋃n

i=1 PLACEMENT(Pi, si) ⊆ W ,

• there is no robot-obstacle collision, i.e.,
(
⋃n

i=1 PLACEMENT(Pi, si)) ∩ (
⋃m

j=1Oj) = ∅, and

• there is no robot-robot collision, i.e., ∀1 ≤ i < j ≤ n :
PLACEMENT(Pi, si) ∩ PLACEMENT(Pj , sj) = ∅.

This paper uses PQP (Larsen et al. 1999) to efficiently im-
plement COLLISION.

In multi-robot motion planning, the objective is to com-
pute a dynamically-feasible trajectory ζi for each robot that
starts at the initial state sinit

i and reaches the goal Gi while
avoiding collisions with obstacles and other robots. More
formally, let {〈a1

1, . . . , a
`−1
1 〉, . . . , 〈a1

n, . . . , a
`−1
n 〉} denote a

set of control action sequences. Let {ζ1, . . . , ζn} denote
the resulting dynamically-feasible trajectories, where ζi :
{1, . . . , `} → Si is obtained by starting at initial state sinit

i

and applying 〈a1
i , . . . , a

`−1
i 〉 in succession, as defined by

Eqn. 5. These trajectories constitute a solution to the multi-
robot motion-planning problem when

• each ζi reaches Gi, i.e., POS(ζi(`)) ∈ Gi, and

• no robot-robot or robot-obstacle collisions occur, i.e.,
∀j ∈ 1, . . . , `: COLLISION(ζ1(j), . . . , ζn(j)) = false.

Geometric Multi-Robot Path Planning
The overall approach, presented in the next section, uses so-
lutions to a simplified problem representation as heuristic
guides. The simplified representation is obtained by consid-
ering motion planning for each robot in a low-dimensional
configuration space Ci rather than the state space Si. Since
Ci discards the dynamics, the robot is free to move and ro-
tate in any direction. As an illustration, for the vehicle model
used in this paper, a configuration c ∈ Ci can be defined as
c = 〈x, y, θ〉 by considering only the position and orienta-
tion components of the state, i.e., Ci = SE(2). The config-
uration of a state s ∈ Si is denoted by CFG(s).

Before relating the details of the overall approach, we
present here our approach for the geometric multi-robot
path-planning problem.

Roadmap Construction
Drawing from PRM (Kavraki et al. 1996), the approach
builds a roadmap over each Ci as an undirected, weighted,
graphRi = (VRi

, ERi
, COSTRi

) by sampling and connect-
ing collision-free configurations. Fig. 2 shows an example.

Figure 2: An example of a roadmap.

A vertex ci ∈ VRi
corresponds to a collision-free configu-

ration in Ci. An edge (ci, c
′
i) ∈ ERi

denotes a collision-free
path connecting ci to c′i. During the construction ofRi, col-
lision checking is done only between the i-th robot and the
obstacles. The cost of an edge (ci, c

′
i) ∈ ERi

is defined as

COSTRi
(ci, c

′
i) = ρi(ci, c

′
i)/CLEARANCE(ci, c

′
i), (6)

where ρi : Ci × Ci → R≥0 is a distance metric over Ci and
CLEARANCE(ci, c

′
i) denotes the minimum distance from the

obstacles to the segment connecting POS(ci) to POS(c′i).
CLEARANCE(ci, c

′
i) is also used in the edge cost since,

without it, shortest paths are likely to bring the robot
close to the obstacles, making navigation more difficult.
PQP (Larsen et al. 1999) or other collision-detection pack-
ages can be used to efficiently compute CLEARANCE(ci, c

′
i).

When constructing the roadmap Ri, the initial and goal
configurations, denoted by cinit

i and cgoal
i , are first added

to VRi
. The initial configuration is obtained from the ini-

tial state, i.e., cinit
i = CFG(sinit

i). The goal configuration is
obtained by repeatedly sampling a random position inside
Gi and a random orientation until the resulting robot place-
ment is not in collision. The roadmap is further populated
by sampling random configurations in Ci and keeping those
that are not in collision. Afterwards, attempts are made to
connect each configuration to several of its nearest neigh-
bors with collision-free paths. The path connecting config-
urations ci and c′i, denoted by PATH(ci, c

′
i), is defined by

interpolation in Ci. If PATH(ci, c
′
i) does not collide with the

obstacles, then the edge (ci, c
′
i) is added to ERi

. Path col-
lision checking is done using a subdivision or an incremen-
tal approach (Choset et al. 2005). The process of sampling
and connecting collision-free configurations is repeated un-
til cinit

i and cgoal
i belong to the same roadmap connected

component. When a solution exist, the probability that the
roadmap finds it approaches one rapidly, as shown by the
probabilistic completeness of PRM (Kavraki et al. 1996).

If the robots have the same configuration space and shape,
i.e., C1 = . . . = Cn and P1 = . . . = Pn, then only one
roadmap is constructed. The initial and goal configurations
of each robot are added to the roadmap and the process of
sampling and connecting configurations continues until each
cinit
i belongs to the same roadmap component as cgoal

i .
Note that an alternative approach to constructing

roadmaps R1, . . . ,Rn over C1, . . . , Cn would be to explic-
itly construct a roadmap over the composite configuration

space C = C1 × . . . × Cn. Such an approach, however, is
known to impose a significant computational cost due to the
increased dimensionality, rendering the roadmap construc-
tion impractical (Choset et al. 2005, chap. 7).

Multi-Robot Roadmap Search
After constructing roadmaps R1, . . . ,Rn, discrete
search is used to find paths that enable each robot to
reach its goal while avoiding collisions with the other
robots (the roadmap construction ensures that there
would be no collisions with the obstacles). Specifically,
MULTIROADMAPSEARCH(R1, . . . ,Rn, c1, . . . , cn) com-
putes collision-free paths σ1, . . . , σn such that each σi is
overRi, starts at ci, and ends at cgoal

i .
MULTIROADMAPSEARCH is defined over the composite

graphR = R1× . . .×Rn, which is not computed explicitly
but rather implicitly via the function, i.e.,

EDGES(〈c1, . . . , cn〉) = {〈c′1, . . . , c′n〉 :

(c1, c
′
1) ∈ ER1 ∧ . . . ∧ (cn, c

′
n) ∈ ERn ∧ (7)

COLLISION(〈c1, . . . , cn〉, 〈c′1, . . . , c′n〉) = false}. (8)

A composite edge (〈c1, . . . , cn〉, 〈c′1, . . . , c′n〉) is collision
free when the robots do not collide with each other as
they move along PATH(c1, c

′
1), . . . , PATH(cn, c

′
n). Caching

is used to speed up collision checking by remembering con-
figuration pairs which have been previously checked.

Any state-of-the-art multi-agent graph search can be used
to implement MULTIROADMAPSEARCH. This paper uses
Windowed Hierarchical Cooperative A* (WHCA*)(Silver
2005) since it is efficient and scalable.

Method
The geometric approach presented in the previous section
takes into account the robot shapes but not the dynamics. As
such, there is no guarantee that the geometric solutions are
dynamically feasible. We present here the complete version
of our approach, which takes into account the robot shapes
and dynamics, and produces collision-free and dynamically-
feasible solutions. The approach uses roadmap routes to the
goal regions as heuristics to effectively guide the motion-tree
expansion. Fig. 3 shows a schematic representation.

Motion Tree in the Composite State Space
To account for the dynamics, the overall approach expands a
motion tree T in the composite state space S1×. . .×Sn. The
motion tree T , which is maintained as a directed graph T =
(VT , ET), is rooted at 〈sinit

1 , . . . , sinit
n 〉 and is incrementally

expanded by adding new vertices and edges. Each vertex
v ∈ VT is associated with a collision-free composite state,
denoted by v.states. The notation v.states[i] denotes the
state corresponding to the i-th robot. An edge (v, v′) ∈ ET
is associated with a collision-free and dynamically-feasible
motion from v.states to v′.states. The edge (v, v′) is la-
beled with the control actions 〈a1, . . . , an〉 that were applied
to v.states to generate v′.states, i.e., ∀i ∈ {1, . . . , n} :
v′.states[i] = SIMULATE(v.states[i], ai, fi, dt).

A solution to the multi-robot motion-planning problem is
found when a new vertex vnew is added to T such that each

Environment
bounding box: W

obstacles: O = {O1, . . . ,Om}

Robot Models
M = {M1, . . . ,Mn}

Mi = 〈Pi,Si,Ai, fi, s
init
i ,Gi〉

Implicit Composite Roadmap
R1 × . . .×Rn, Ri = (VRi , ERi ,costRi)

Multi-Agent
Pathfinding

Motion Tree
T = (VT , ET)

over S1 × . . .× Sn

Equivalence Classes
Γ = {Γkey1

, . . . ,Γkeyk
}

key = 〈c1, . . . , cn〉 ∈ VR1 × . . .× VRn

Γkey.paths = 〈σ1, . . . , σn〉

Expand Equivalence Class
controller, simulate, collision

Select Equivalence Class
argmaxΓ〈c1,...,cn〉∈Γw(Γ〈c1,...,cn〉)

〈c1, . . . , cn〉

roadmap
paths
〈σ1, . . . , σn〉

Figure 3: Schematic illustration of the proposed approach.

state in vnew.states has reached the corresponding goal, i.e.,
∀i ∈ {1, . . . , n} : POS(vnew.states[i]) ∈ Gi. In such a
case, the solution trajectory ζi for the i-th robot corresponds
to 〈v1.states[i], . . . , v`.states[i]〉, where 〈v1, . . . , v`〉 with
v` = vnew denotes the path from the root of T to vnew.

Using the Roadmaps and Discrete Search to Guide
the Motion-Tree Expansion
A crucial aspect of the approach is the use of the roadmaps
R1, . . . ,Rn to guide the motion-tree expansion. In fact, the
roadmaps are used to partition T into equivalence classes.
An equivalence class contains all the vertices in T that map
to the same tuple of roadmap configurations. Specifically, a
mapping function MAP : S1× . . .×Sn → VR1

× . . .×VRn

is defined from states to roadmap configurations as

MAP(〈s1, . . . , sn〉) = 〈MAP1(s1), . . . ,MAPn(sn)〉 (9)

where each MAPi : Si → VRi is defined as

MAPi(s) = argmin
c∈VRi

ρi(c, CFG(s)). (10)

In other words, s ∈ Si is mapped to the nearest configuration
in VRi . Using this mapping, 〈c1, . . . , cn〉 ∈ VR1×. . .×VRn

defines the equivalence class

Γ〈c1,...,cn〉 = {v : v ∈ VT ∧〈c1, . . . , cn〉 = MAP(v.states)}.
(11)

T is then partitioned into a set of equivalence classes as

Γ = {Γ〈c1,...,cn〉 : 〈c1, . . . , cn〉 ∈ VR1
× . . .× VRn

∧
|Γ〈c1,...,cn〉| > 0}. (12)

As an implementation note, Γ is maintained as a hashmap
indexed by 〈c1, . . . , cn〉. When vnew is added to T , its key
is computed as MAP(vnew.states). If ΓMAP(vnew.states) 6∈ Γ,
then it is created and added to Γ; otherwise, it is retrieved
from Γ. In both cases, vnew is added to ΓMAP(vnew.states).

The partition Γ allows us to leverage multi-agent graph
search to guide the motion-tree expansion. Specifically,
when an equivalence class Γ〈c1,...,cn〉 is first created,
MULTIROADMAPSEARCH(R1, . . . ,Rn, c1, . . . , cn) is in-
voked to compute collision-free (but not necessarily dynam-
ically feasible) roadmap paths σ1, . . . , σn for each robot to

its goal. These paths are stored in the data structure repre-
senting Γ〈c1,...,cn〉 as Γ〈c1,...,cn〉.paths. The motion-tree ex-
pansion seeks to expand T from vertices in Γ〈c1,...,cn〉 along
Γ〈c1,...,cn〉.paths. Preference is given to equivalence classes
whose associated paths have lower cost than other equiva-
lence classes, since expansions along those paths are more
likely to quickly lead each robot to its goal. When the expan-
sion fails to make progress, which could happen due to the
geometric and differential constraints imposed by the obsta-
cles and the dynamics, the approach penalizes Γ〈c1,...,cn〉 to
promote expansions from other equivalence classes.

The procedures for selecting and expanding an equiva-
lence class are invoked repeatedly until a solution is found
or a runtime limit is reached. Pseudocode is shown in Alg. 1.

Selecting an Equivalence Class A weight is defined
for each equivalence class and the equivalence class with
the maximum weight is selected for expansion (Alg. 1:6).
Specifically, the weight for Γ〈c1,...,cn〉 is defined as

w(Γ〈c1,...,cn〉) =
αΓ〈c1,...,cn〉.nrSel∑n

i=1(COST(Γ〈c1,...,cn〉.paths[i]))2
,

(13)
where 0 < α < 1 and Γ〈c1,...,cn〉.nrSel denotes the number
of times Γ〈c1,...,cn〉 has been previously selected.

In this way, preference is given to equivalence classes as-
sociated with low-cost roadmap paths. The parameter α is a
penalty factor to avoid selecting the same equivalence class
indefinitely. In fact, repeatedly selecting Γ〈c1,...,cn〉 will con-
tinue to reduce its weight so that eventually some other
equivalence class will end up having a greater weight and
thus be selected for expansion. This is essential to ensure
probabilistic completeness and avoid becoming stuck when
the motion-tree expansion from Γ〈c1,...,cn〉 repeatedly fails
due to the geometric and differential constraints.

Expanding an Equivalence Class along Roadmap Routes
After selecting Γ〈c1,...,cn〉, the approach seeks to expand T
along Γ〈c1,...,cn〉.paths (Alg. 1:7–22). To expand T along
σi = Γ〈c1,...,cn〉.paths[i], a target configuration ctarget

i for
the i-th robot is first set by sampling a collision-free config-
uration near σi[2] (since σi[1] = ci). Sampling near σi[2] as
opposed to setting ctarget

i = σi[2] is preferred to give more
flexibility to the expansion, since the roadmap paths are not
necessarily dynamically feasible. As such, forcing the robot
to follow those paths exactly could be infeasible.

After setting the targets, attempts are made to expand T
from the closest vertex v in Γ〈c1,...,cn〉 to 〈c1, . . . , cn〉, i.e.,

v = argmin
v′∈Γ〈c1,...,cn〉

n∑
i=1

ρi(ci, CFG(v′.states[i])). (14)

A collision-free and dynamically-feasible trajectory is gen-
erated from v toward 〈ctarget

1 , . . . , ctarget
n 〉 by applying con-

trol actions and integration the motion equations for sev-
eral time steps, stopping when a collision is found. A
proportional-integrative-derivative (PID) controller (Spong,
Hutchinson, and Vidyasagar 2005) is used to select the
control actions that steer the i-th robot toward ctarget

i

Algorithm 1 Pseudocode for the proposed approach
Input: bounding box W; obstacles O; robot models M =
{M1, . . . ,Mn}, Mi = 〈Pi,Si,Ai, fi, s

init
i ,Gi〉; time step

dt; configuration spaces {C1, . . . , Cn}; runtime limit tmax

Output: collision-free and dynamically-feasible trajectories for
each robot from initial to goal; or ⊥ if no solution

1: for i = 1 . . . n do
2: Ri = (VRi , ERi , COSTRi)← ROADMAP(Ci,Pi,s

init
i ,Gi)

3: T = (VT , ET)← (∅, ∅); Γ← ∅
4: ADDVERTEXANDUPDATEEQC(T ,Γ, sinit1 , . . . , sinitn ,

parent← ⊥, a1 ← ⊥, . . . , an ← ⊥)
5: while TIME() < tmax do
6: Γ〈c1,...,cn〉 ← SELECTEQC(Γ)
7: for i = 1 . . . n do
8: σi ← Γ〈c1,...,cn〉.paths[i]

9: ctargeti ← FIRSTTARGET(σi)

10: v ← SELECTVERTEX(Γ〈c1,...,cn〉, c
target
1 , . . . , ctargetn)

11: for several steps do
12: solved← true
13: for i = 1 . . . n do
14: si ← v.state[i]
15: ai ← CONTROLLER(si, c

target
i)

16: snewi ← SIMULATE(si, ai, fi, dt)
17: if POS(snewi) 6∈ Gi then solved←false
18: if NEAR(snewi ,ctargeti) then ctargeti ←

NEXTTARGET(σi)
19: if COLLISION(snew1 , . . . , snewn) then break
20: vnew ← ADDVERTEXANDUPDATEEQC(T ,Γ,

snew1 , . . . , snewn , v, a1, . . . , an)
21: if solved then return 〈ζ1, . . . , ζn〉 ← TRAJS(T , vnew)
22: v ← vnew
23: return ⊥

ADDVERTEXANDUPDATEEQC(T ,Γ, snew1 , . . . , snewn , v, a1, . . . , an)
1: vnew ← new motion-tree vertex
2: vnew.parent← v
3: vnew.states← 〈snew1 , . . . , snewn 〉
4: vnew.actions← 〈a1, . . . , an〉
5: 〈cnew1 , . . . , cnewn 〉 ← MAP(R1, . . . ,Rn, s

new
1 , . . . , snewn)

6: Γ〈cnew1 ,...,cnewn 〉 ← FIND(Γ, 〈cnew1 , . . . , cnewn 〉)
7: if Γ〈cnew1 ,...,cnewn 〉 = ⊥ then
8: Γ〈cnew1 ,...,cnewn 〉 ← new equivalence class
9: Γ〈cnew1 ,...,cnewn 〉.paths←

MULTIROADMAPSEARCH(R1, . . . ,Rn, c
new
1 , . . . , cnewn)

10: INSERT(Γ〈cnew1 ,...,cnewn 〉, vnew)

11: INSERT(Γ,Γ〈cnew1 ,...,cnewn 〉); return vnew

(Alg. 1:15). For a vehicle, the PID controller selects actions
that turn the wheels and then move toward ctarget

i . When the
trajectory being expanded gets near the target (within some
predefined distance), ctarget

i is set by sampling a collision-
free configuration near the next position in σi (Alg. 1:18).
If the new state is in collision, the trajectory generation
stops (Alg. 1:19), and the approach goes back to selecting
an equivalence class. Otherwise, a new vertex is added to
T (Alg. 1:20). The partition Γ is updated accordingly, as de-
scribed earlier. If the new vertex represents states where each
robot has reached its goal, then the algorithm terminates suc-
cessfully since a solution is found (Alg. 1:21).

Runtime Analysis and Probabilistic Completeness
The construction of each roadmap Ri is dominated by col-
lision checking and nearest-neighbors computations. Us-
ing sweep-and-prune algorithms, collision checking be-
tween the i-th robot and the obstacles runs in O((nO +
|Pi|) log(nO+ |Pi|)) time, where nO =

∑
i=1 |Oi| denotes

the total number of vertices for the obstacles. Computing
the k-nearest neighbors runs in O(k log |VRi

|) time by us-
ing efficient searches (Beygelzimer, Kakade, and Langford
2006). Determining a bound on the number of calls to col-
lision checking and nearest neighbors remains open since it
depends on the probability of generating collision-free con-
figurations and the length of the edges. Hence, the analysis
has focused on providing bounds on the probability of find-
ing a solution with respect to the roadmap size (Kavraki et al.
1996; Ladd and Kavraki 2004; Karaman and Frazzoli 2011).
Such analysis also applies to our roadmap constructions.

Below we discuss the runtime complexity of the motion-
tree expansion (Alg. 1:5–22). SELECTEQC (Alg. 1:6) runs
in O(log |Γ|) time. SELECTVERTEX (Alg. 1:10) runs in
O(log |VT |) time. SIMULATE (Alg. 1:16) runs in O(d)
time, where d is the maximum number of the state vari-
ables for S1, . . . ,Sn, since it uses Runge-Kutta to inte-
grate the motion equations. COLLISION (Alg. 1:19) runs in
O(nO log nO +nnP log nP) time, where nO =

∑
i=1 |Oi|

and nP =
∑n

i=1 |Pi|. ADDVERTEXANDUPDATEEQC
(Alg. 1:4,20) invokes MAP and MULTIROADMAPSEARCH.
MAP runs in O(

∑n
i=1 log |VRi

|) time. The complexity of
MULTIROADMAPSEARCH depends on the particular multi-
agent graph search method being used. Since each compos-
ite edge in MULTIROADMAPSEARCH invokes COLLISION
for checking robot-robot collisions, the runtime of expand-
ing a node is O(nnP log nP). Using an A* variant gives
O((b∗)k) on the number of nodes expanded, denoted by
nNodesRmSearch, where b∗ is the effective branching factor
and k is the minimum length of the solution.

Let nMP denote the number of times the motion-tree
expansion is invoked, i.e., entering the while loop. Then,
SELECTEQC and SELECTVERTEX are invoked nMP times.
Since the number of control steps (Alg. 1:11) is bounded by
a user-defined constant, COLLISION and MAP are invoked
O(nMP) times and SIMULATE is invoked O(nnMP) times.
MULTIROADMAPSEARCH is invoked once per equivalence
class, so |Γ| times. Putting it all together, and using the fact
that |Γ| ≤ |VT |, the runtime complexity is

O(nMP(log |VT |+ nd+ nO log nO +
n∑

i=1

log |VRi
|+ nNodesRmSearch nnP log nP)). (15)

Bounding nMP remains an open problem. The proposed ap-
proach, however, is probabilistically complete, which guar-
antees that a solution will be found, when it exists, with
probability approaching one. The claim follows from the
analysis in (Plaku 2015) which can be applied to sampling-
based motion planners that use discrete search to guide
the motion-tree expansion. Although the analysis in (Plaku
2015) is presented for a single robot, it still applies in our
case since T is expanded over the composite state space

S = S1 × . . .× Sn. Thus, multiple robots, for the purposes
of the analysis, are considered as one system operating in S.

Experiments and Results
Experiments are conducted with second-order vehicle mod-
els operating in complex environments (Fig. 1 and 4), where
cooperation among the robots is often required to find so-
lutions. Experiments compare the approach to related work
and evaluate the planning runtime as the number of robots is
increased. The robot models, scenes, and the proposed ap-
proach are made publicly available (Release 2017).

Problem Instances A problem instance is defined by a
scene and the number of robots. For a given scene and num-
ber of robots n, 60 problem instances were generated by ran-
domly placing the robots and the goals. To make the test
cases more challenging, rather than sampling from W , the
initial states and goals were sampled to be inside certain
manually-selected areas. Fig. 1 and 4 show some examples.
Each multi-robot motion planner is run on each of the prob-
lem instances. Results report the runtime and solution cost
after dropping the best and worst five runs to avoid the influ-
ence of the outliers. The runtime includes everything from
reading the input until finding a solution. Solution cost is
measured as the distance traveled by the robots. Experiments
were run on an Intel Core i7 (1.90GHz).

Comparisons to Related Work The proposed approach
is compared to a centralized and a prioritized version of
RRT (LaValle and Kuffner 2001), denoted by cRRT and
pRRT. The implementations use goal bias, efficient nearest-
neighbor search, and multi-step expansions, as advocated in
the literature. We also compare to a prioritized version of
GUST (Plaku 2015), denoted by pGUST. GUST was selected
due to its computational efficiency, which derives from us-
ing discrete search to guide the motion-tree expansion. We
could only use a prioritized version of GUST, since, as men-
tioned in the discussion of related work, it remains open to
effectively extend GUST as a centralized approach.

Results in Fig. 5 show that our approach is significantly
faster than cRRT, pRRT, and pGUST. The runtime improve-
ments become more prominent as the number of robots is
increased and on the scenes where cooperation among the
robots is required to find solutions. The runtime of cRRT de-
grades as the number of robots is increased. As cRRT lacks
global guidance, the high-dimensionality of the composite
state space makes it difficult for cRRT to effectively expand
the motion tree. pRRT performs better than cRRT since it
operates over the individual state spaces. pGUST is faster
than pRRT since it uses discrete search to guide the motion-
tree expansion. In open scenes (scene 2), where cooperation
is not essential, pGUST is faster than our approach as the
robot trajectories do not interfere with each other. pRRT and
pGUST, however, as prioritized approaches, have difficulty
finding solutions when a previously planned trajectory pre-
vents the next robot from reaching its goal. This is prevalent
in scenes 1, 3, and especially 4, 5, 6, where cooperation is
required to find a solution. Our approach shows remarkable
efficiency in solving these complex problems. In fact, cRRT,

scene 2

scene 3

scene 4

scene 5

scene 6

Figure 4: Scenes used in the experiments (scene 1 shown in Fig. 1). Videos of solutions obtained by our approach on these
scenes can be found at https://goo.gl/sQ6irb. Figure best viewed in color and on screen.

1/8
1/4
1/2

1
2
4
8

16
32
64

scene 1 scene 2 scene 3 s4 s5 s6

a
b
c
d

ru
nt

im
e

[s
]

1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10 3 3 30

1/2

1

1.5

2

2.5
scene 1 scene 2 scene 3 s4 s5 s6a

b
c
d

nr. of robotsso
lu

tio
n

le
ng

th
 [d

ia
g(

W
)]

Figure 5: Runtime and solution-length results when comparing (a) our approach to (b) pGUST, (c) pRRT, and (d) cRRT.
Runtime measures everything from reading the input file to reporting that a solution is found (including for our approach the
time to build the roadmaps). Missing entries indicate failure by the planner to solve the problem instances within the runtime
limit (set to 90s per run). Note in particular that only our approach could solve scenes 4, 5, 6 (denoted as s4, s5, s6 in the figure).
Solution length is scaled by dividing it by the length of the diagonal ofW . Each bar indicates one standard deviation.

pRRT, and pGUST all timed out in scenes 4, 5, 6 (set to 90s
per run), while our approach found solutions in 1-3s. This is
due to using routes obtained by MULTIROADMAPSEARCH
to effectively guide the motion-tree expansion.

Results in Fig. 5 also show that our approach is able to

find shorter solutions than cRRT or pRRT. This is again due
to using MULTIROADMAPSEARCH to guide the motion-tree
expansion. Since cRRT and pRRT lack global guidance, the
obtained solutions tend to be long. pGUST uses discrete
search to guide the motion-tree expansion, so it finds so-

X X X X

1/8
1/4
1/2

1
2
4
8

16
32
64

scene 1 scene 2 scene 3 s4 s5 s6
a
b
c

ru
nt

im
e

[s
]

X X X X

1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10 3 3 30

1/2

1

1.5

2

2.5
scene 1 scene 2 scene 3 s4 s5 s6a

b
c

nr. of robotsso
lu

tio
n

le
ng

th
 [d

ia
g(

W
)]

Figure 6: Runtime and solution-length results of our overall approach when varying the window-size parameter of WHCA*(Sil-
ver 2005), which was used as MULTIROADMAPSEARCH. Experiments were run with window sizes of (a) 2, (b) 5, and (c) 10.
Entries marked with X indicate failure to find a solution within the runtime limit (90s per run).

lutions in similar length as our approach. As a note, un-
der certain assumptions, in the single robot case, there are
sampling-based motion planners that guarantee probabilis-
tic optimality (Karaman and Frazzoli 2010; Li, Littlefield,
and Bekris 2016), but it comes at a significant increase in the
runtime cost due to the rewiring of the motion-tree branches.

Impact of MULTIROADMAPSEARCH Fig. 6 shows
the results when varying the window-size parameter
of WHCA*(Silver 2005), which we used to imple-
ment MULTIROADMAPSEARCH. The window size can be
thought of as the number of look-ahead moves to resolve
conflicts. A small window size works well in open scenes
but can have a hard time resolving conflicts in scenes where
robots have to exchange places over a long and narrow pas-
sage. A large window size causes WHCA* to precalculate
larger proportions of the routes. Even though it reduces the
number of reroutings, each rerouting has higher cost. Results
in Fig. 6 show that the overall planning runtime is reduced
when the window size is neither too small nor too large. It is
an interesting problem to find an optimal window size or to
dynamically adjust the window size to reduce the planning
runtime. As shown in Fig. 6, the window size has less of an
impact on the length of the solution trajectories.

Runtime Distribution Fig. 7 shows the runtime distri-
bution for various components of our approach. Note that
MULTIROADMAPSEARCH takes a significant portion. This
indicates that our approach is able to shift the load from the
motion-tree expansion, which is slow as it is over the com-
posite state space, to multi-agent pathfinding over graphs. In
other words, routes obtained by MULTIROADMAPSEARCH
effectively guide the motion-tree expansion so that it spends
little time exploring parts of the composite state space that
are not needed to find a solution.

Discussion
This paper developed an effective, cooperative, and
probabilistically-complete multi-robot motion planner that

1 2 4 6 8 10 1 2 4 6 8 10 1 2 4 6 8 10 3 3 30

20

40

60

80

100
scene 1 scene 2 scene 3 s4s5s6

nr. of robotsru
nt

im
e

di
st

rib
ut

io
n

[%
]

Figure 7: Runtime distribution as a percentage of the to-
tal runtime for the various components of our approach
(from bottom to top): (a) create roadmaps (Alg. 1:1-2),
(b) MULTIROADMAPSEARCH (Alg. 1:20), (c) SIMULATE
(Alg. 1:16), (d) COLLISION (Alg. 1:19), and (e) other.

took into account the geometric and differential constraints
imposed by the obstacles and the robot dynamics. The
premise of this work was that the motion-tree expansion in
the composite state space could be effectively guided by us-
ing solutions in a simplified geometric setting that did not
take dynamics into account. The heuristic solutions were
obtained by constructing roadmaps over low-dimensional
configuration spaces and relying on cooperative multi-agent
graph search to effectively find graph routes.

This work opens up several research directions. Advances
in multi-agent pathfinding over graphs can directly increase
the efficiency and scalability of the framework by reduc-
ing the runtime and improving the quality of the guides. In
the other direction, feedback from the motion-tree expan-
sion can be used by multi-agent pathfinders to avoid or prune
routes that are deemed infeasible. Other research directions
include incorporating high-level planning formalisms to en-
able a team of robots to perform complex tasks.

Acknowledgements
This work is supported by NSF IIS-1449505 and NSF IIS-
1548406.

References
Amir, O.; Sharon, G.; and Stern, R. 2015. Multi-agent
pathfinding as a combinatorial auction. In AAAI National
Conference on Artificial Intelligence, 2003–2009.
Beygelzimer, A.; Kakade, S.; and Langford, J. 2006. Cover
trees for nearest neighbor. In Interantional Conference on
Machince Learning, 97–104.
Branicky, M. S. 1995. Universal computation and other
capabilities of continuous and hybrid systems. Theoretical
Computer Science 138(1):67–100.
Cheng, P.; Frazzoli, E.; and LaValle, S. 2008. Improv-
ing the performance of sampling-based motion planning
with symmetry-based gap reduction. IEEE Transactions on
Robotics 24(2):488–494.
Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L. E.; and Thrun, S. 2005. Principles
of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press.
Şucan, I. A., and Kavraki, L. E. 2012. A sampling-based tree
planner for systems with complex dynamics. IEEE Transac-
tions on Robotics 28(1):116–131.
Erdem, E.; Kisa, D. G.; Öztok, U.; and Schueller, P. 2013.
A general formal framework for pathfinding problems with
multiple agents. In AAAI National Conference on Artificial
Intelligence, 290–296.
Jansen, M. R., and Sturtevant, N. R. 2008. Direction maps
for cooperative pathfinding. In AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment,
185–190.
Karaman, S., and Frazzoli, E. 2010. Optimal kinodynamic
motion planning using incremental sampling-based meth-
ods. In IEEE Conference on Decision and Control, 7681–
7687.
Karaman, S., and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. International Journal
of Robotics Research 30(7):846–894.

Kavraki, L. E.; Švestka, P.; Latombe, J. C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation 12(4):566–580.
Keller, H. 1992. Numerical Methods for Two-Point
Boundary-Value Problems. New York, NY: Dover.
Kiesel, S.; Burns, E.; and Ruml, W. 2012. Abstraction-
guided sampling for motion planning. In Symposium on
Combinatorial Search, 162–163. Also as UNH CS Tech-
nical Report 12-01.
Ladd, A. M., and Kavraki, L. E. 2004. Measure theoretic
analysis of probabilistic path planning. IEEE Transactions
on Robotics and Automation 20(2):229–242.
Larsen, E.; Gottschalk, S.; Lin, M. C.; and Manocha, D.
1999. Fast proximity queries with swept sphere volumes.
Tr99-18, Department of Computer Science, University of N.
Carolina, Chapel Hill.
LaValle, S. M., and Kuffner, J. J. 2001. Randomized kinody-

namic planning. International Journal of Robotics Research
20(5):378–400.
Le, D., and Plaku, E. 2014. Guiding sampling-based tree
search for motion planning with dynamics via probabilistic
roadmap abstractions. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 212–217.
Li, Y.; Littlefield, Z.; and Bekris, K. E. 2016. Asymptoti-
cally optimal sampling-based kinodynamic planning. Inter-
national Journal of Robotics Research 35:528–564.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2010. Motion
planning with dynamics by a synergistic combination of lay-
ers of planning. IEEE Transactions on Robotics 26(3):469–
482.
Plaku, E. 2015. Region-guided and sampling-based tree
search for motion planning with dynamics. IEEE Transac-
tions on Robotics 31:723–735.
Reif, J. 1979. Complexity of the mover’s problem and gener-
alizations. In IEEE Symposium on Foundations of Computer
Science, 421–427.
Release, P. 2017. Supplementary material. Author names
and web link suppressed to maintain anonimity during the
review process.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Silver, D. 2005. Cooperative pathfinding. In AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment, volume 1, 117–122.
Solovey, K.; Salzman, O.; and Halperin, D. 2015. Finding a
needle in an exponential haystack: Discrete RRT for explo-
ration of implicit roadmaps in multi-robot motion planning.
In Algorithmic Foundations of Robotics. 591–607.
Spong, M. W.; Hutchinson, S.; and Vidyasagar, M. 2005.
Robot Modeling and Control. John Wiley and Sons.
Wagner, G.; Kang, M.; and Choset, H. 2012. Probabilistic
path planning for multiple robots with subdimensional ex-
pansion. In IEEE International Conference on Robotics and
Automation, 2886–2892.

