
February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

To appear in the Journal of Experimental & Theoretical Artificial Intelligence
Vol. 00, No. 00, Month 20XX, 1–23

Interactive Search for Action and Motion Planning with Dynamics

E. Plaku∗ and Duong Le

Department of Electrical Engineering and Computer Science

Catholic University of America, Washington DC, USA 22064

(Received 00 Month 20XX; accepted 00 Month 20XX)

This paper proposes an interactive search approach, termed INTERACT, which couples
sampling-based motion planning with action planning in order to effectively solve the com-
bined task- and motion-planning problem. INTERACT is geared toward scenarios involving a
mobile robot operating in a fully-known environment consisting of static and movable objects.
INTERACT makes it possible to specify a task in the planning-domain definition language
(PDDL) and automatically computes a collision-free and dynamically-feasible trajectory that
enables the robot to accomplish the task. The coupling of sampling-based motion planning
with action planning is made possible by expanding a tree of feasible motions and partition-
ing it into equivalence classes based on the task predicates. Action plans provide guidance
as to which a equivalence class should be further expanded. Information gathered during
the motion-tree expansion is used to adjust the action costs in order to effectively guide the
expansion toward the goal. This interactive process of selecting an equivalence class, expand-
ing the motion tree to implement its action plan, and updating the action costs and plans
to reflect the progress made is repeated until a solution is found. Experimental validation
is provided in simulation using a robotic vehicle to accomplish sophisticated pick-and-place
tasks. Comparisons to previous work show significant improvements.

Keywords: sampling-based motion planning; AI planning; PDDL; robot dynamics

1. Introduction

Addressing the combined task- and motion-planning problem is becoming increasingly
important as a growing number of diverse robotics applications in navigation, search-
and-rescue, manipulation, and surgical procedures involve reasoning with both discrete
actions and continuous motions. In these settings, there is a need to increase the capa-
bilities of the robotic system so that it can plan a collision-free and dynamically-feasible
motion trajectory that enables the robot to accomplish the specified task. This problem
has two crucial aspects: (i) planning in the space of high-level actions, and (ii) planning
in the continuous space of feasible motions.

Action planning seeks to break down the overall task into a sequence of logical dis-
crete actions, often relying on a simplified and abstract representation of the world that
does not take into account the robot dynamics, obstacle avoidance, and other complex
physical constraints. This has made it possible to specify high-level tasks using expres-
sive logical models and planning-domain definition languages such as STRIPS (Fikes &
Nilsson, 1971), PDDL (McDermott et al., 1998), ADL (Pednault, 1994), HAL (Marthi,

∗Corresponding author. Email: plaku@cua.edu

1

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Russell, & Wolfe, 2007), and efficiently plan high-level actions that accomplish the spec-
ified tasks (Bonet & Geffner, 2001; Botea, Enzenberger, Müller, & Schaeffer, 2005; Coles
& Coles, 2011; Helmert, 2006; Hoffmann & Nebel, 2001; Nakhost & Müller, 2012; Richter
& Westphal, 2010; Rintanen, 2012; Sievers, Ortlieb, & Helmert, 2012).

From the other end of the spectrum, motion planners based on probabilistic sampling
allow for richer world representations that take into account geometric constraints im-
posed by obstacles and differential constraints imposed by robot dynamics (Şucan &
Kavraki, 2012; Devaurs, Simeon, & Cortés, 2013; Hsu, Kindel, Latombe, & Rock, 2002;
Ladd & Kavraki, 2005; LaValle & Kuffner, 2001; Le & Plaku, 2014; Plaku, 2013, 2015;
Plaku, Kavraki, & Vardi, 2010; Wells & Plaku, 2015). This has been possible by consid-
ering simpler tasks, such as reachability, where the objective is to reach a desired location
while avoiding collisions.

Decoupled approaches, which treat action and motion planning separately, have had
limited success due to the intertwined dependencies between the high-level aspects of
the task and the low-level motions needed to implement the task. Due to constraints
imposed by robot dynamics and collision-avoidance requirements, it may be difficult or
impossible to implement a particular action. Thus, a central issue is determining which
actions are feasible. This gives rise to circular dependencies as the feasibility of an action
plan is determined by planning a motion trajectory that implements the action plan but
generating such motion trajectory requires the action plan to be feasible. These issues
are further exacerbated by the computational complexity of motion planning. In fact,
motion planning with dynamics is undecidable (Branicky, 1995). Sampling-based motion
planners offer only probabilistic completeness, which guarantees that a solution will be
found if it exists with probability approaching one but cannot determine whether or not
a solution exists (Choset et al., 2005).

To address these intertwined dependencies, this paper proposes INTERACT (Inter-
active Search for Action and Motion Planning), which tightly couples sampling-based
motion planning with action planning. INTERACT makes it possible to specify a high-
level task in PDDL and automatically computes a collision-free and dynamically-feasible
trajectory that enables the robot to accomplish the task. The key insight is to simulta-
neously search and selectively explore the discrete space of actions and the continuous
space of feasible motions. Starting from the initial state, a motion tree is incrementally
expanded by adding collision-free and dynamically-feasible motions as branches. The in-
teraction between action planning and motion planning is made possible by partitioning
the motion tree into equivalence classes based on the task predicates. Action plans com-
puted for each equivalence class provide guidance as to which and how an equivalence
class should be further expanded. A workspace decomposition is used to facilitate the
expansion of an equivalence class along regions compatible with its action plan. If no
progress is made, the corresponding action costs are increased to reduce the likelihood of
being included in future action plans, and a new action plan is computed for the selected
equivalence class. This interactive process of selecting an equivalence class, expanding
the motion tree to implement its action plan, and updating the action costs and plans
is repeated until a solution is found. By tightly coupling sampling-based motion plan-
ning with action planning, INTERACT is able to efficiently compute collision-free and
dynamically-feasible trajectories that satisfy PDDL specifications.

1.1. Related Work

Approches seeking to combine task and motion planning can be broadly divided into
three categories: (i) the motion planner drives the overall search and uses the symbolic

2

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

action planner to compute action plans that can guide the search; (ii) the symbolic
action planner drives the overall search and uses the motion planner to geometrically
instantiate symbolic actions; and (iii) the planning interface seeks to capture both the
task description and the motion-planning semantics associated with the actions.

The proposed approach, INTERACT, and the aSyMov planner (Cambon, Alami, &
Gravot, 2009) belong to the first category. aSyMov combines probabilistic roadmaps
(PRMs) (Kavraki, Švestka, Latombe, & Overmars, 1996) with symbolic action planning.
While INTERACT shares with aSyMov the general idea of using the PDDL planner to
guide sampling-based motion planning, it makes several contributions. First, aSyMov can-
not take into account the differential constraints imposed by the robot dynamics since
each PRM edge requires exact steering between its configurations. Exact solutions to this
two-boundary value problem are available only in limited cases while numerical solutions
leave large gaps in the roadmap and render its construction impractical (Cheng, Frazzoli,
& LaValle, 2008; Keller, 1992). In contrast, INTERACT expands a motion tree, which
does not require exact steering, but only the ability to simulate the dynamics. Other dis-
tinct features of INTERACT include the introduction of the equivalence classes, the use
of the workspace decomposition to facilitate the motion-tree expansion, and the update
of the action costs and plans to reflect the progress made by the motion-tree expansion.

Another set of approaches considers the motion planner as a geometric reasoner which
is invoked by the action planner during the search to geometrically instantiate the sym-
bolic actions. In this context, PDDL is extended with semantic attachments which al-
lows for the evaluation of grounded predicates and changing of fluents by external func-
tions, making it possible to seamlessly invoke a path planner (Dornhege et al., 2012).
Further work along this line developed an object-oriented language to make it easier
to combine task and motion planning (Hertle, Dornhege, Keller, & Nebel, 2012). Due
to the complexity of motion planning (undecidable when dynamics are considered and
PSPACE-complete when dynamics are ignored), the geometric reasoner is often based on
a sampling-based approach, which is computationally efficient but offers only probabilis-
tic completeness. This makes it impossible to distinguish between an infeasible action and
the inability of the path planner to find a solution within the given time limit. As a result,
such approaches are often incomplete. Moreover, the path planner is invoked numerous
times to instantiate different actions, which can considerably increase the runtime.

Hierarchical task networks (HTNs) and other hierarchical formulations are also used
in combination with geometric path planners to break down the task into subtasks and
prune the search space (Kaelbling & Lozano-Pérez, 2011; Wolfe, Marthi, & Russell,
2010). The search space is also pruned by combining constraints from symbolic action
plans and the kinematic model of the robot into a network of geometric constraints
(Lagriffoul, Dimitrov, Bidot, Saffiotti, & Karlsson, 2014).

Other approaches seek to merge task- and motion-planning at the level of the problem
description by using formalisms to capture both the task description and the motion-
planning semantics associated with the actions. Examples include knowledge-based rea-
soning (Choi & Amir, 2009), high-level causal reasoning combined with low-level geomet-
ric reasoning using the action description language C+ (Erdem, Haspalamutgil, Palaz,
Patoglu, & Uras, 2011), and answer-set programming (Erdem, Aker, & Patoglu, 2012).
Narrative-based reasoning has also been used to postdict explanations that describe what
may have caused deviations from the planned motions (Eppe & Bhatt, 2013). Other
approaches have used geometric volumes in order to provide an intermediate representa-
tion that captures both the discrete symbolic actions and the continuous robot motions
(Gaschler et al., 2013). Another line of research developed an interface aiming to link ge-
ometric reasoning with symbolic planning by incorporating geometric entities into HTN

3

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

(a) (b) (c)

Figure 1. (a) Example of a pick-and-place task where the robot is required to transfer each object labeled with i
to the dropoff area labeled with Gi. The robot can pick up only one object at a time, and, while carrying an object,

is allowed to travel only to an adjacent empty room. Figure is best viewed in color, on screen, and zoomed in.

(b) Snapshot of the motion-tree expanded by INTERACT when guided by the action plan that seeks to transfer
object 1 to G1 by passing from room R5 to R2 via door D4. (c) INTERACT penalizes the action move(R5, R2,

D4) since it fails to make progress, and, discovers an alternative plan that it is able to implement.

planning (de Silva, Pandey, & Alami, 2013).

1.2. Contribution

In contrast to aSyMov (Cambon et al., 2009) and other geometric reasoners, INTERACT
plans dynamically-feasible motions. Considering the combined task- and motion-planning
problem only in a geometric setting could lead to infeasible motion plans. A geometric
solution, for example, may require the vehicle to instantaneously stop, turn in place, or
move sideways, which could be infeasible due to the differential constraints imposed by
the dynamics. As an illustration, referring to the pick-and-place task shown in Fig. 1, the
robot is required to transfer the object labeled with i to the dropoff area labeled with
Gi. An action plan could require transferring O1 to G1 by passing from room R5 to R2,
and then moving from R2 to R3 to R4 to pickup O2, and finally transferring O2 to G2 by
passing from R4 to R5. Although such action plan could be implemented geometrically
(as the robot fits through the narrow passages that connect room R5 to R2), it is difficult
to implement when considering the dynamics due to the inability of the vehicle to move
sideways. When INTERACT is run with this problem instance, it quickly penalizes the
above action plan (since it fails to make progress), and discovers an alternative action
plan that it is able to implement while taking the dynamics into account.

INTERACT draws from earlier work on using discrete search to guide sampling-based
motion planning (Le & Plaku, 2014; Plaku, 2013, 2015; Plaku et al., 2010). It also took
into account specifications given in a fragment of Linear Temporal Logic (LTL) (McMa-
hon & Plaku, 2014). INTERACT leverages from this work the idea of tightly coupling the
layers of planning and shows how to effectively combine sampling-based motion planning
with symbolic action planning in order to account for PDDL task specifications.

PDDL task specifications were also taken into account by SMAP (Plaku & Hager,
2010). SMAP offered a proof-of-concept that sampling-based motion planning can be used
in conjunction with action planning. INTERACT makes significant improvements to the
interplay between the planning layers and offers several contributions: (i) partitioning the
motion tree into equivalence classes based on task predicates; (ii) using action planning
to determine which and how to expand each equivalence class; (iii) using a workspace
decomposition to facilitate expansion of an equivalence class along regions compatible
with its action plan; (iv) using information gathered during motion-tree expansion to
update action costs in order to find more suitable action plans. Comparisons to SMAP
show speedups of one order of magnitude.

4

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

2. Problem Formulation

INTERACT, as aSyMov, numerous geometric reasoners, and SMAP, assumes a fully-
known environment consisting of static obstacles and movable objects. INTERACT is
geared for problems involving a mobile robot. Since INTERACT couples sampling-based
motion planning with action planning, it is best suited for PDDL predicates and actions
whose semantics are related to the robot motion.

This section describes the task domain, the robot model, the world model, the inter-
pretation of the task domain in the world model, and the problem statement. The task
domain defines the discrete space and actions associated with the PDDL task planner.
The robot model defines the geometry, control inputs, and the differential equations of
motions of the robot. The world, which is modeled in a continuous setting, is comprised
of the robot, movable objects, and static obstacles. The world gives meaning to the dis-
crete predicates and actions. Each world state is mapped to a discrete state according to
the predicates that it satisfies. Robot motions, which are defined as sequences of world
states, make it possible to implement the discrete actions in the continuous world.

2.1. Discrete Task Specification

This work uses PDDL (McDermott et al., 1998) to allow for sophisticated task specifica-
tions. It assumes a closed-world formulation and requires a PDDL planner that supports
action costs and seeks to minimize the plan cost. The domain is defined as a tuple
D = (O,P, C,A) comprised of objects and schemas for predicates, costs, and actions.
Predicates express relations among objects. A predicate schema P ∈ P with arity n can
be considered as a Boolean function P : On → {>,⊥}. An instantiation P (o1, . . . , on) is
referred to as a grounded literal, which is considered positive when P (o1, . . . , on) = >.
Cost schemas provide a mechanism to associate costs with actions. Conceptually, a cost
schema C ∈ C with arity n corresponds to a function of the form C : On → R. An instan-
tiation of C is given as a pair (C(o1, . . . , on), r) where o1, . . . , on denote the objects and
r denotes the cost. Action schemas define the available actions. Each action schema is
of the form 〈A(v1, . . . , vn), Apre, Aeffect〉, where A is the action name, each vi is an object
variable, Apre defines the conditions that must hold in order for A to be applicable, and
Aeffect defines the effect of applying A in terms of the conditions that become true, the
conditions that become false, and the changes that occur to the total cost.

A planning instance for a domain D = (O,P, C,A) is defined by an initial discrete
state q and a goal φgoal. Each discrete state is of the form (g1, . . . , gm, c1, . . . , ck) where
each gi denotes a positive grounded literal and each cj denotes an instantiation of a cost
schema. This gives rise to the notion of the discrete space, denoted by Q, as the set
containing all the discrete states. The goal, φgoal, which is specified as a conjunction of
positive and negative grounded literals, indicates the conditions that must become true
and those that must become false. Discrete states are transformed via actions. An action
a ∈ A corresponds to an instantiation of the action schema A with objects o1, . . . , on as
its arguments, i.e., A(o1, . . . , on). Given an action a ∈ A and a discrete state q ∈ Q that
satisfies a’s precondition, the notation qnew ← apply(q, a) is used to denote the discrete
state qnew ∈ Q obtained by applying the effects of a to q. The objective of the PDDL
planner is then to compute an action plan a1, . . . , a` which transforms the discrete state
q to a discrete state that satisfies φgoal while seeking to minimize the total cost of the
action plan. In the context of the overall approach, the PDDL planner will be invoked
numerous times starting from different discrete states.

5

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Figure 2. An example of the pick-and-place task domain. Videos of solutions obtained by the approach can be
found in the supplementary material. Figure best viewed in color and on screen.

Example: Pick-and-Place Task

In the pick-and-place task, as shown in Fig. 1 and 2, the environment consists of several
rooms connected by doors. The task requires the robot to pickup and place each object
Oi (shown in yellow) to the corresponding dropoff area Gi (shown as a blue rectangle)
while avoiding collisions. The robot can pick up only one object at a time. While carrying
an object, the robot is allowed to travel only to an adjacent empty room. The robot is
allowed to release the object only in the dropoff area of an empty room (it does not
matter whether or not the dropoff area is labeled as a goal).

The planning domain has objectsO = {O1, . . . , On, R1, . . . , Rm, D1, . . . , Dd}, whereOi,
Rj , and Dk denote the i-th movable object, j-th room, and k-th door, respectively. The
predicate schemas P consists of (robotInRoom ?Ri), (objInRoom ?Oi ?Rj), (connects
?Ri ?Rj ?Dk), (empty ?Ri), (carry ?Oi), and (robotEmpty) which indicate whether
or not the robot is in room Ri, the object Oi is in room Rj , the door Dk connects
rooms Ri and Rj , the room Ri is empty, the robot is carrying object Oi, and the robot
is not carrying any object, respectively. The action schemas A consist of move(?Ri ?Rj

?Dk), pickup(?Ri ?Oj), moveWithObject(?Ri ?Rj ?Dk ?Ol), and release(?Ri ?Oj),
which indicate that the robot moves from room Ri to Rj via door Dk, robot picks up
object Oj in room Ri, robot moves from room Ri to Rj via door Dk while carrying object
O`, and robot releases object Oj in room Ri, respectively. There are also costs associated
with each of these actions. Definitions of the move and pickup action schemas are shown
below. The full domain definition is provided in the supplementary material.

(:action move :parameters (?Ri ?Rj - room ?d - door)

:precondition (and (robotInRoom ?Ri) (connects ?Ri ?Rj ?d) (robotEmpty))

:effect (and (not(robotInRoom ?Ri)) (robotInRoom ?Rj) (increase (total-cost) (moveCost ?Ri ?Rj ?d))))

(:action pickup :parameters (?Ri - room ?o - movable)

:precondition (and (robotInRoom ?Ri) (objInRoom ?o ?Ri) (robotEmpty))

:effect (and (carry ?o) (not(robotEmpty)) (increase (total-cost) (pickupCost ?Ri ?o))))

2.2. Task Interpretation in the Continuous World

The world W, which gives meaning to the predicates and actions, is modeled in a con-
tinuous setting which describes the robot, movable objects, and static obstacles.

6

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

2.2.1. Robot Model

The robot model is defined by specifying the geometry, control inputs, and equations of
motions. The robot state s ∈ S, where S is the robot state space, defines the position,
orientation, steering angle, velocity, and other components that change as a result of
motion. A function u : [0, T]→ U indicates the control inputs, e.g., acceleration, steering
velocity, that are applied to the robot at each time step. As a result of applying u, the
robot state changes according to its motion equations giving rise to a motion trajectory
ζ : [0, T]→ S. The equations of motions f : S×U → Ṡ are specified as a set of differential
equations. Hence, ζ is obtained by numerically integrating f , i.e.,

ζ(t) = s+

∫ t

h=0
f(ζ(h), u(h))dh. (1)

As an example, for a car-like vehicle, the robot state is defined as s = (x, y, θ, v, ψ),
which consists of the position (x, y), orientation (θ), velocity (v), and steering angle (ψ).
The robot is controlled by setting the acceleration (ua) and the rotational velocity of the
steering angle (uω). The differential equations of motion are defined as

ẋ = v cos(θ) cos(ψ), ẏ = v sin(θ) cos(ψ), θ̇ = v sin(ψ)/L, v̇ = ua, ψ̇ = uω, (2)

where L is the distance from the back to the front wheels.

2.2.2. Mapping Discrete States to World States

For the pick-and-place task, the world state w ∈ W is defined as w =
(s, cfg1, . . . , cfgn, carry1, . . . , carryn), where s denotes the robot state, cfgi denotes the
position and orientation of the movable object Oi, and carryi indicates whether or not
the robot is carrying Oi (at most one of these variables can be true since the robot is
not allowed to carry more than one object at a time). The notations w[s], w[cfgi]

, w[carryi]

denote the robot state, configuration, and carry components associated with w.
A function τ : W → Q provides the predicate semantics by mapping a world state

to the corresponding discrete state. For example, (objInRoom O1 R5) is satisfied by
w ∈ W if O1 is in R5 when placed according to w[cfg1]. As another example, (carry O2)

is satisfied when w[carry2] is true, which would indicate that the robot is carrying O2.
A sequence of world states [w1, . . . , w`] is said to implement an action a iff each

τ(w1), . . . , τ(w`−1) satisfies a’s precondition and τ(w`) = apply(τ(w`−1), a). As an ex-
ample, move(R5, R2, D2) is implemented when w1, . . . , w`−1 places the robot in room
R5 and w` places the robot in room R2 where the transition from R5 to R2 occurs via
door D2. As another example, pickup(R2, O3) is implemented when w1, . . . , w`−1 places
the robot in R5 and w` places the robot in R5 in a position where it has picked up O3.
A sequence of world states [w1, . . . , wn1

, . . . wn2
, . . . , wn`

] is said to accomplish an action
plan a1, . . . , a` if [wni−1

, . . . , wni
] implements ai for each i ∈ {1, . . . , `}, where n0 = 1.

Note that this definition requires the intermediate world states wni−1
, . . . , wni−1 to sat-

isfy ai’s precondition as opposed to requiring only wni−1. In this way, the robot motions
adhere to the action plan. As an example, referring to Fig. 2, consider the action plan
move(R5 R2 D2), pickup(R2 O3), and suppose the robot is in room R5. By requiring
the intermediate world states to satisfy the preconditions of the actions, the robot can
implement the action plan only by moving from room R5 to R2 and then picking up O3.
If only wni−1 was required to satisfy ai’s precondition, then the action plan could be
satisfied by a sequence of world states which does not adhere to the intent of the action

7

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

plan, i.e., robot moves from R5 to R2, then to R3, back to R2, and finally picks up O3.

2.2.3. World Simulator

For the pick-and-place task, the robot, as shown in Fig. 2, is equipped with a circular
magnetic handle. The robot can pick up an object Oi by activating the magnet when the
centroid of Oi is inside the circular handle. Once picked up, the robot carries the object
until it decides to release it inside an empty dropoff area.

From a motion-planning perspective, a function

wnew ← simulate(w, u, dt, a) (3)

encapsulates how the world state changes as the result of the robot motions and actions.
In this formulation, wnew is the new world state obtained when the input control u is
applied to the world state w for one time step dt, where a is the action that needs to
be implemented. For example, if a is a move action, wnew[s] is obtained by applying
u to w[s] and numerically integrating the equations of motions for one time step. The
other components of the world state remain unchanged. If a is a pickup action, e.g.,
pickup(R5 O1), wnew is first updated as in a move action. The simulator then checks if
the centroid of the object to be picked up (O1 in the example) is inside the circular handle
of the robot. If so, then wnew[carry1] is set to true to signify that the robot activated the
magnet and picked up the object. If a is a move-with-object action, the configuration of
the object being carried is updated based on the robot state to account for the fact that it
is attached to the robot. If a is a release action, the robot state and the configuration of the
object being carried are first updated as in the move-with-object action. The simulator
then checks if the object being carried is inside the empty dropoff area associated with
the release action. If so, the object is released and each wnew[carryi]

is set to false.
Note that wnew, obtained by simulate(w, u, dt, a), does not have to correspond to a

world state where the action a is accomplished. In fact, wnew could correspond to some
intermediate state. As an illustration, if a = move(R5,R2,D2) and w places the robot
in room R5, then wnew can still place the robot in room R5. As another example, if
a = pickup(R2, O3) and w places the robot in room R2 in a position where it cannot
pickup O3, then wnew can still place the robot in a position where it cannot pickup
O3. Subsequent states, obtained by applying the same or different control inputs for
additional time steps, could result in a world state where a is accomplished.

A world state w is considered valid if (i) the values of the robot state for the steering
angle, velocity, and other components are within desired bounds, and (ii) the robot, when
placed according to w[s], is not in collision with the obstacles or movable objects that it
is not carrying. This is encapsulated by a function valid : W → {>,⊥} which is used
by the approach to check the validity of the world states.

2.3. Problem Statement

Given the world W (including descriptions of the robot model, movable objects,
static obstacles, simulate, and valid), a planning domain (O,P, C,A), a mapping
τ : W → Q, an initial world state winit ∈ W, a goal φgoal as a conjunction of
positive and negative grounded literals, compute an action plan a1, . . . , a` and a se-
quence of control inputs [u1, . . . , un1

, . . . , un`−1] such that the sequence of world states
[w1, . . . , wn1

, . . . wn2
, . . . , wn`

] with w1 = winit resulting from applying the control inputs
in succession satisfies the following:

8

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

• [w1, . . . , wn1
, . . . wn2

, . . . , wn`
] implements the action plan a1, . . . , a`,

• τ(wn`
) satisfies φgoal, and

• valid(wi) = > for each wi in the sequence,

where dt is the simulation time step and wj ← simulate(wj−1, uj−1, dt, ai) for i ∈
{1, . . . , `} and j ∈ {ni−1 + 1, . . . , ni} (with n0 = 0).

3. Preliminaries

Before presenting INTERACT, we first describe the workspace decomposition and the
motion tree which are used by INTERACT to facilitate the overall search.

3.1. Workspace Decomposition

The environment in which the robot operates is decomposed into nonoverlapping regions.
This work uses triangulations as it ensures that regions in the decomposition do not
overlap with obstacles (except at the boundaries). The Triangle package (Shewchuk,
2002) is used to compute the triangulation. Examples are shown in Fig. 3.

Figure 3. Examples of workspace triangulations.

The workspace decomposition is maintained as a graph D = (R,E), where R denotes the
regions and E = {(ri, rj ∈ R and ri, rj are adjacent } denotes the edges. The approach
relies on a function LocateRegion(p) which determines the region r ∈ R that contains
the point p. Efficient implementations of LocateRegion are available that run in poly-
logarithmic time (de Berg, Cheong, van Kreveld, & Overmars, 2008). For convenience,
the notation LocateRegion(s) with s ∈ S is used as a shorthand to denote invoking
LocateRegion with the position of the center of the circular handle when the robot is
placed according to the position and orientation specified by the robot state s.

3.2. Motion Tree

The search over W is conducted by expanding a motion tree T . The motion tree T is
maintained as a directed acyclic graph. Each vertex v ∈ T is associated with a collision-
free world state, a discrete state, a control input, an action, and its vertex parent, denoted
by v.w, v.q, v.u, v.a, v.parent, respectively, where v.q = τ(v.w). The edge (v.parent, v)
denotes the fact that v.w was obtained by applying the control input to its parent, i.e.,

v.w ← simulate(v.parent.w, v.u, dt, v.a). (4)

9

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Figure 4. Example of a motion tree.

The motion tree T initially contains only the root vertex which is associated with the
initial world state winit (its control input and action are set to null). The motion tree
is incrementally expanded by adding new vertices. Fig. 4 provides an illustration. A
solution is found when a vertex vnew is added to T such that τ(vnew.w) satisfies φgoal.
The solution is then obtained as the sequence of the world states associated with the
vertices that connect the root of T to vnew.

4. Method

Γq1 Γq2
. . . Γqk

Γ〈q2,r1〉 . . . Γ〈q2,rm〉
region
groups

Equivalence Groups
Motion Tree

Workspace
Decomposition

Start

root at winit
Planning
Domain

φgoal
Action
Costs

Action
Planner

qk

action plan

Select
Equivalence Group

Select
Region Group

Expand
Region Group

criteria: plan costs,
selection penalties

Γq

action a

Γ〈q,r〉

action aadd
branch

sampling-based motion planning

update

Figure 5. A schematic representation of INTERACT.

Before describing the algorithmic details of INTERACT, we provide an overview that
focuses on the planning layers and their interplay. A schematic representation is shown
in Fig. 5. Due to the intertwined dependencies between task and motion planning, the
success of the search depends on the ability of INTERACT to effectively explore the
search space. For this reason, INTERACT leverages τ , which maps a world state to
its corresponding discrete state, to partition the motion tree T into equivalent groups.
In fact, from an action-planning perspective, world states wi and wj carry the same
information when τ(wi) = τ(wj). In this way, vertices of T are grouped together based
on the discrete states. More precisely, each discrete state q ∈ Q defines an equivalence
class, denoted as Γq, which contains all the vertices in T that map to q, i.e.,

Γq.vertices = {v : v ∈ T and τ(v.w) = q}. (5)

As a result, the vertices in T are partitioned into several groups according to their

10

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

respective equivalence class, i.e.,

Γ = {Γq : q ∈ Q and Γq.vertices 6= ∅}. (6)

The vertices in Γq are further partitioned based on their corresponding region in the
workspace decomposition. This is done to leverage recent advances in sampling-based
motion planning which have shown that workspace decompositions are useful in guiding
the motion-tree expansion (Plaku, 2013, 2015; Plaku et al., 2010). Thus, Γ〈q,r〉 contains
all the vertices in T that map to the discrete state q ∈ Q and to the region r ∈ R, i.e.,

Γ〈q,r〉.vertices = {v : v ∈ Γq.vertices and r = LocateRegion(v.w[s])}. (7)

As a result, the vertices in Γq are partitioned into several groups according to the regions
in the decomposition, i.e.,

Γq.regions = {Γ〈q,r〉 : r ∈ R and Γ〈q,r〉.vertices 6= ∅}. (8)

As shown in Fig. 5, INTERACT leverages action planning to compute action plans for
each group Γq. INTERACT relies on sampling-based motion planning to expand the
motion tree along promising action plans. This is accomplished by first selecting a group
Γq based on the cost of its action plan. Afterwards, INTERACT leverages the workspace
decomposition to select a region Γ〈q,r〉 which is likely to lead to motion-tree expansions
in accordance with the action plan associated with Γq. The motion tree is then expanded
from vertices Γ〈q,r〉, seeking to implement the action plan. Action costs and plans are
updated to reflect the progress made by sampling-based motion planning. This interplay
between sampling-based motion planning and action planning is repeated until a solution
is found or an upper bound on the running time is reached.

A critical aspect of INTERACT is determining the group Γq ∈ Γ from which to expand
T . INTERACT leverages action planning to maintain an action plan for each Γq, denoted
by Γq.actionPlan. The action plan is computed using q as the initial discrete state and
φgoal as the goal. The cost of the action plan serves as a heuristic to estimate the feasibility
of satisfying φgoal. During the selection process, preference is given to groups with low
action-plan costs. This constitutes the greedy aspect of the selection. Since an action plan
may be difficult or impossible to implement due to constraints imposed by the obstacles
and robot dynamics, a penalty is applied to Γq each time it is selected for expansion.
This provides the methodical aspect of the selection process which enables INTERACT
to abandon an infeasible action plan and instead expand the search from new groups.

After selecting Γq, INTERACT seeks to expand T so that it can implement the first
action a in Γq.actionPlan. INTERACT leverages the workspace decomposition to de-
termine appropriate regions along which to expand T in order to implement a. As an
example, if a corresponds to move(R1, R2), then the workspace decomposition can be
searched for a sequence of regions which allows the robot to move from room R1 to R2.
More specifically, among the region groups Γ〈q,r〉 in Γq.regions, preference is given to those
that are close to room R2. As another example, when considering a pickup or release
action, preference is given to those region groups that are close to the dropoff area. More
formally, INTERACT maintains a cost with each (Γ〈q,r〉, a) based on the distance along
the shortest-path in the decomposition graph D = (R,E) from r to the destination room
or dropoff area associated with the action a. The heuristic cost is complemented with
selection penalties to counteract the greediness of the selection process. After selecting
Γ〈q,r〉, INTERACT attempts to expand T along the shortest-path in the decomposition

11

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

from r toward the destination associated with a.
If the expansion successfully implements a, then a new group Γqnew is created. This new

group will inherit the action plan from Γq (minus the first action) as there is no reason
to abandon it since the expansion is successful. If, after several attempts, the expansion
fails to implement a, then the action plan associated with Γq is abandoned. The cost
associated with a is increased and a new action plan is computed for Γq. If action plans
associated with other groups contain a, then their costs are also updated. This provides
an effective way to account for changes in the cost of a without resorting to recomputing
the action plans for all the groups, which would significantly increase the runtime.

This process of selecting a group Γq from Γ, expanding T from vertices in Γq to
implement the first action in Γq.actionPlan, and updating the action costs and plans to
reflect the progress made is repeated until a solution is found or the runtime limit is
reached. Details of the group selection and motion-tree expansion in INTERACT follow.

4.1. Group Selection

INTERACT maintains an overall cost for each group Γq, denoted by cost(Γq), based on
the cost of the action plan and the number of times Γq has been selected previously, i.e.,

cost(Γq) = cost(Γq.actionPlan)βnrSel(Γq). (9)

In this way, preference is given to groups associated with low-cost action plans. The
parameter β > 1 serves as a penalty factor to avoid overexploration or becoming stuck
when expansions from Γq are infeasible. The group Γq with the lowest overall cost in Γ
is then selected for expansion, i.e.,

SelectGroup(Γ) = argmin
Γq∈Γ

cost(Γq). (10)

After selecting Γq, the objective is to expand T from Γq.vertices so that it implements the
first action a in Γq.actionPlan. To facilitate the expansion, INTERACT also maintains
an overall cost for each pair 〈Γ〈q,r〉, a〉, denoted by cost(〈Γ〈q,r〉, a〉), and defined as

cost(〈Γ〈q,r〉, a〉) = cost(path(D, r, a))βnrSel(〈Γ〈q,r〉,a〉), (11)

where path(D, r, a) denotes the shortest path in the decomposition graph D = (R,E)
from r to the destination room or dropoff area associated with the action a. As before, β
penalizes selections to avoid overexplorations or becoming stuck. The region group Γ〈q,r〉
with the lowest overall cost in Γq.regions is then selected for expansion, i.e.,

SelectRegionGroup(Γq, a) = argmin
Γ〈q,r〉∈Γq.regions

cost(〈Γ〈q,r〉, a〉). (12)

Note that it is possible to use two different parameters, β1 and β2, to define the group-
and region-selection penalties in Eqs. 9 and 11. In this paper, the same selection penalty,
β, was used in both cases since it worked well in the experiments and simplified the
process of selecting parameter values.

12

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Algorithm 1 INTERACT
Input: problem specification; tmax: upper bound on running time
Output: A collision-free and dynamically-feasible trajectory that satisfies the task specification

or null if no solution is found

1: D = (R,E)←WorkspaceDecomposition()
2: [T ,Γ]← initialize(winit)
3: while ¬solved and time < tmax do
4: Γq ← SelectGroup(Γ)
5: a← Γq.actionPlan.firstAction

// Expand motion tree from Γq seeking to complete action a
6: nrIters← rand(minNrIters,maxNrIters); actionCompleted← ⊥
7: while nrIters > 0 and ¬solved and ¬actionCompleted do
8: Γ〈q,r〉 ← SelectRegionGroup(Γq, a)
9: target← SelectTarget(Γ〈q,r〉, a)

10: v ← SelectVertex(Γ〈q,r〉, a, target)
11: actionCompleted← ExpandTree(T ,Γ, v, target, a, φgoal); nrIters← nrIters− 1
12: if ¬actionCompleted then
13: cost(a)← IncreaseActionCost(a)
14: for each Γq′ ∈ Γ do // update cost of action plan
15: if a ∈ Γq′ .actionPlan then RecomputePlanCost(Γq′ .actionPlan)
16: Γq.actionPlan← PDDLPlanner(q, φgoal)
17: if solved return solution else return null

4.2. Overall Expansion

Pseudocode for INTERACT is provided in Alg. 1. INTERACT starts by computing the
workspace decomposition (Alg. 1:1) and initializing the motion tree (Alg. 1:2). INTER-
ACT then proceeds iteratively by selecting a group (Alg. 1:4) and then expanding the
motion tree (Alg. 1:5–16). The group selection was described in Section 4.1. The rest of
this section describes the motion-tree expansion.

Let Γq be the group selected for expansion from Γ (Alg. 1:4). Let a be the first action of
Γq.actionPlan (Alg. 1:5). INTERACT will seek several times to expand T from Γq.vertices
to implement a (Alg. 1:6–11). Each iteration consists of selecting a region group Γ〈q,r〉
from Γq.regions, a target point p, a vertex v from Γ〈q,r〉.vertices, and applying control
inputs to expand T from v toward p. As explained in Section 4.1, the region group Γ〈q,r〉
with the minimum cost(〈Γ〈q,r〉, a〉) is selected for expansion (Alg. 1:8). The target point
p is sampled uniformly at random inside a region selected uniformly at random along the
shortest path from r to the destination room or dropoff area associated with the action
a (Alg. 1:9). Drawing from RRT (LaValle, 2011; LaValle & Kuffner, 2001), the closest
vertex in Γ〈q,r〉.vertices to p is then selected for expansion (Alg. 1:10). When computing
the closest vertex, the distance between a vertex v and the target point p is defined as
||center(v.s) − p||, where center(v.s) denotes the position of the center of the robot
handle. Although other distance metrics can be used, this workspace distance worked
well in the experiments as it relates to the robot motions.

Pseudocode for the algorithm to expand T from v toward p is shown in Alg. 2. Control
inputs are obtained by using a PID controller which adjusts the steering wheel so that
the robot vehicle points toward the target point p. The controller is applied for a number
of steps (sampled uniformly at random from some lower and upper bound) (Alg. 2:1-2).
After simulating the robot motion, collision checking is performed to ensure that there
are no collisions (Alg. 2:3-4). If a collision is found, the expansion terminates. Otherwise,
a new vertex vnew is added to T (Alg. 2:5–14). If the discrete state, qnew, associated
with vnew satisfies φgoal, then the search terminates successfully (Alg. 2:16). In such a
case, the solution consists of the sequence of the world states associated with the vertices

13

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Algorithm 2 ExpandTree(T ,Γ, v, target, a, φgoal)

Input: T : motion tree; Γ: partition of motion tree into groups; v: vertex in T from which to
expand; target: point toward which to expand; a: current action; φgoal: goal

Output: It adds new vertices to T and returns > iff the tree expansion implements a

1: for i = 1 . . .rand(minNrSteps,maxNrSteps) and ¬solved do
2: u← RobotController(v.w[s], target)
3: wnew ← simulate(v.w, u, dt, a)
4: if ¬valid(wnew) then return ⊥
// add new vertex to T and to corresponding group in Γ
5: vnew.[w,parent, u, r, q]← [wnew, v, u,LocateRegion(wnew[s]), τ(wnew)]; insert(T , vnew)
6: qnew ← vnew.q; Γqnew

← find(Γ, qnew)
7: if Γqnew

= null then
8: Γqnew ← NewGroup(qnew); insert(Γ,Γqnew)
9: if qnew = apply(v.q, a) then Γqnew .actionPlan← Γv.q.actionPlan \ {a}

10: else Γqnew .actionPlan← PDDLPlanner(qnew, φgoal)
11: insert(Γqnew .vertices, vnew)
12: rnew ← vnew.r; Γ〈qnew,rnew〉 ← find(Γqnew .regions, rnew) //add to appropriate region group
13: if Γ〈qnew,rnew〉 = null then
14: Γ〈qnew,rnew〉 ← NewRegionGroup(rnew); insert(Γqnew .regions,Γ〈qnew,rnew〉)
15: insert(Γ〈qnew,rnew〉.vertices, vnew)

16: if goal(qnew) then { solved← >; return > }
17: if qnew = apply(v.q, a) then return >
18: v ← vnew
19: return ⊥

in T connecting its root to vnew. The expansion also terminates successfully when qnew

satisfies the postcondition of the action a (Alg. 2:17).
When vnew is added to T , it is also added to the corresponding group in Γ (Alg. 2:6–

15). As an implementation note, Γ is maintained as a hash map. A find operation is
performed with qnew as the key (Alg. 2:6). If Γqnew is not found in Γ, it is created and
inserted into the hash map; otherwise, it is retrieved from the hash map (Alg. 2:7–8). In
both cases, vnew is inserted into Γqnew

.vertices. A similar procedure is followed for finding
Γ〈qnew,r〉 in Γqnew

.regions, and inserting vnew to Γ〈qnew,r〉.vertices (Alg. 2:11-15).
An action plan is associated with Γqnew when it is first created (Alg. 2:9–10). If the

action a is completed, Γqnew
inherits the action plan (minus the first action) from its

parent, Γv.q, as there is no reason to abandon it. Otherwise, the PDDL planner is invoked
with qnew as the initial discrete state to compute an action plan for Γqnew (Alg. 2:10).

As shown in Alg. 1:6–11, several attempts are made to implement the action a by
expanding T from the selected group Γq. If these expansions fail to implement the action
a, then its cost is doubled (Alg. 1:13). The cost doubling worked well in the experiments,
but, of course, other ways of increasing the cost can also be used. The cost increase
serves as a penalty to reduce the likelihood of including a in the action plans of new
groups. Since the action a could be part of the action plans already computed for the
other groups in Γ, their costs are recomputed (by adding the costs associated with the
plan actions) to reflect the increase in the cost of the action a (Alg. 1:14–15). Also, a new
action plan is computed for Γq since the expansion of a was not successful (Alg. 1:16).

In this way, by penalizing unsuccessful actions, INTERACT avoids becoming stuck
following what could be an infeasible action. This allows INTERACT to explore alter-
native action plans, which, although initially had a higher cost, are now more promising.
As an example, as shown in Fig. 1, INTERACT penalizes the action move(R5, R2, D4)

when it fails to expand the motion tree from room R5 to R2. After the cost increase,
INTERACT considers an alternative plan from R5 to R4, which it can easily implement.

14

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

(1) Prob2x2 Objs2 1 (2) Prob2x2 Objs2 2 (3) Prob2x2 Objs2 3

(4) Prob3x2 Objs4 1 (5) Prob3x2 Objs4 2 (6) Prob3x2 Objs4 3

(7) Prob3x3 Objs4 1 (8) Prob3x3 Objs4 2 (9) Prob3x3 Objs4 3

(10) Prob3x3 Objs5 1 (11) Prob3x3 Objs5 2 (l2) Prob3x3 Objs5 3

(13) Prob3x3 Objs6 1 (14) Prob3x3 Objs6 2 (15) Prob3x3 Objs6 3

Figure 6. Problem instances 1–15 used in the experiments (problem 0 is shown in Fig. 1). Each case is labeled

as ProbAxB ObjsN i where A×B denotes the arrangement of rooms in an A×B grid, N denotes the number of

objects, and i ∈ {1, 2, 3} denotes an instance. Figures may be best viewed in color, on screen, and zoomed in.

5. Experiments and Results

Experimental validation is provided in simulation using various instances of the pick-and-
place task domain (Section 2). Comparisons to related work show significant improve-
ments. The impact of the action planner, workspace decomposition, and the selection
penalty factor on the overall performance of INTERACT are also studied.

5.1. Experimental Setup

5.1.1. Problem Instances

Problem instances are generated by specifying the number of rooms, movable objects, and
obstacles. Rooms are configured in a grid. Door placements are determined by running

15

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Table 1. The number of actions in the optimal action plan for each of the problem instances as

computed by an optimal PDDL planner starting from the initial discrete state, i.e., τ(winit).

problem 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

plan length 8 7 9 9 29 31 31 61 32 59 49 39 55 77 76 46

a maze generator on the grid graph. The dropoff areas, robot, movable objects, and
obstacles are placed in random locations, using rejection sampling to ensure that there
are no collisions. The problem-instance generator will be made publicly available.

The problem instances used in the experiments are shown in Fig. 1 and 6. Table 1
shows the length of the optimal action plan for each problem instance as computed by
an optimal PDDL planner starting from the initial discrete state, i.e., τ(winit). These are
difficult problems that even in a discrete setting require tens of actions to be solved.

5.1.2. PDDL Action Planners

As discussed in the introduction, INTERACT works with PDDL planners that take
into account action costs and seek to minimize the total cost. For the experiments,
we used the popular Fast Downward package (Helmert, 2006). Among the available
optimization planners, Fast Downward Stone Soup 1 and 2 yielded the best results in
our setting. Among the satisficing planners, a modified version of Lama worked best.
The modified version ran the search as lazy weighted A* with a weight factor set to
10. When using these PDDL planners, INTERACT is referred to as INTERACT[fdss-1],
INTERACT[fdss-2], and INTERACT[sat] respectively.

5.1.3. Runtime and Solution Length

The performance of a method on a problem instance is measured by running it 30 times
(since it is probabilistic). A timeout of 60s is set for each run. Results report mean
running time and standard deviation. The runtime includes everything from reading the
input file to reporting that a solution is found. Solution length is measured as the distance
traveled by the robot. Experiments were run on an Intel Core i7 (CPU: 1.90GHz, RAM:
4GB) using Ubuntu 14.10 and GNU g++-4.8.2.

5.2. Results

This section presents results on the anytime performance of INTERACT, comparisons
with previous work, and the impact of the workspace decomposition, selection penalty
factor (β), and the PDDL action planner on the overall performance of INTERACT.

5.2.1. Anytime Performance

Fig. 7(a,b) shows the percentage of successful runs of INTERACT as a function of
runtime on various problem instances. Fig. 7(c) shows the anytime results when con-
sidering all the 480 runs (30 for each of the 16 problem instances). INTERACT[fdss-
1], INTERACT[fdss-2], and INTERACT[sat] always found a solution. The worst runs
for INTERACT[fdss-1], INTERACT[fdss-2], and INTERACT[sat] were 12.4s, 13.6s, and
29.7s, respectively. Overall, INTERACT[fdss-1] and INTERACT[fdss-2] perform equally
well while INTERACT[sat] is less efficient. Since INTERACT[sat] uses a satisficing
PDDL planner, the action plans can be longer which makes the motion-tree expansion
computationally more demanding.

16

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

0
10
20
30
40
50
60
70
80
90

100

0 3 6 9 121518212427

prob. (1)

prob. (4)

prob. (7)

prob. (10)

prob. (13)

(a) INTERACT[fdss-1]

s
o

lv
e

d
 [

%
]

time [s]
0 3 6 9 121518212427

prob. (1)

prob. (4)

prob. (7)

prob. (10)

prob. (13)

(b) INTERACT[fdss-2]

time [s]
0 3 6 9 121518212427

prob. (1)

prob. (4)

prob. (7)

prob. (10)

prob. (13)

(c) INTERACT[sat]

time [s]
0 3 6 9 121518212427

INTERACT[fdss-1]

INTERACT[fdss-2]

INTERACT[sat]

(d) all problems

time [s]

Figure 7. (a)–(b) Anytime results for INTERACT[fdss-1], INTERACT[fdss-2], and INTERACT[sat] on various
problem instances. (c) Anytime results for INTERACT[fdss-1], INTERACT[fdss-2], and INTERACT[sat] over all

the sixteen problem instances. In each case, the graph shows the percentage of successful runs (out of 30) that

had a runtime of less than or equal to t seconds, as t varies in increments of 0.5s.

1/2

1

2

4

8

16

32

60

m
e

a
n

 r
u

n
ti
m

e
 [

s
]

X X X X X X X X XX X X X X X X X XX X X X X X X X X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
problem

a
b
c
d
e
f

Figure 8. Mean runtime when comparing INTERACT to SMAP: (a) INTERACT[fdss-1], (b) INTERACT[fdss-

2], (c) INTERACT[sat], (d) SMAP[fdss-1], (e) SMAP[fdss-2], (f) SMAP[sat]. Each bar indicates the standard
deviation. Due to the significant differences in runtime, logscale is used for the y-axis with the label showing the

actual value rather than its logarithm. A problem entry marked with X denotes failure by the indicated planner
to obtain a solution in at least 20 out of the 30 runs within the time limit of 60s per run.

0

50

100

150

200

250

300

350

m
e

a
n

 s
o

lu
ti
o

n
 l
e

n
g

th
 [

m
] X X X X X X X X XX X X X X X X X XX X X X X X X X X

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
problem

INTERACT[fdss-1]

INTERACT[fdss-2]

INTERACT[sat]

SMAP[fdss-1]

SMAP[fdss-2]

SMAP[sat]

Figure 9. Mean solution length, measured as the distance traveled by the robot, when comparing INTERACT
to SMAP. Each bar indicates the standard deviation. A problem entry marked with X denotes failure by the

indicated planner to obtain a solution in at least 20 out of the 30 runs within the time limit of 60s per run.

5.2.2. Comparisons to Related Work

INTERACT is compared to SMAP (Plaku & Hager, 2010). As discussed in Section 1.1,
other approaches, such as aSyMov, which combine motion and PDDL planning, do not
incorporate vehicle dynamics into motion planning and so cannot be applied to our prob-
lem setting. INTERACT and SMAP have been implemented using the same simulator,
collision checking, and general utilities.

17

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Fig. 8 shows the runtime results on all problem instances. Results indicate that IN-
TERACT is significantly faster than SMAP. The efficiency of INTERACT derives from
the tight coupling of sampling-based tree search with action planning. By using action-
plan costs as heuristics, INTERACT is able to expand the motion tree from groups that
are estimated to be close to reaching the goal. At the same time, INTERACT imposes
penalties on failed attempts to implement certain actions which makes it possible to
explore new actions. The workspace decomposition effectively guides the motion-tree ex-
pansions to move the robot to the desired room or to a dropoff area where it can pickup
or release an object as indicated by the action plan. This combination of greedy and
methodical exploration enables INTERACT to quickly progress toward the goal while
avoiding becoming stuck exploring difficult or infeasible actions.

Fig. 8 shows that INTERACT[fdss-1] and INTERACT[fdss-2] often are faster than
INTERACT[sat]. Since the PDDL planner in INTERACT[sat] does not compute optimal
action plans, it may take more time to implement the action plans.

Fig 9 shows the results with respect to the solution length, measured as the distance
traveled by the robot. Results indicate that INTERACT produces shorter solutions than
SMAP. The differences are more pronounced on the problem instances that require long
sequences of actions to achieve the goal. The effective combination of sampling-based
tree search and action planning enables INTERACT to find short solution trajectories.

Fig. 9 also shows that, as the problems become more complex, INTERACT[sat] gener-
ates longer solution trajectories than INTERACT[fdss-1] and INTERACT[fdss-2]. This
is due to the use of a satisficing PDDL planner, which does not necessarily compute
optimal action plans.

5.2.3. Runtime Distribution

a b c d e

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 101112131415

ru
n
ti
m

e
 d

is
tr

ib
u
ti
o
n
 [
%

]

problem

(a) INTERACT[fdss-1]

0 1 2 3 4 5 6 7 8 9 101112131415
problem

(b) INTERACT[fdss-2]

0 1 2 3 4 5 6 7 8 9 101112131415
problem

(c) INTERACT[sat]

Figure 10. Runtime percentage for various components of INTERACT: (a) PDDL planner (Alg. 1:16, Alg. 2:10);

(b) collision checking (Alg. 2:4); (c) simulate (Alg. 2:3); (d) add vertex (Alg. 2:5–9,11–15); (e) other.

Fig. 10 shows the runtime percentage for various components of INTERACT. Results
indicate that action planning dominates the running time. Indeed, INTERACT invokes
the action planner numerous times using different initial discrete states and different
action costs. By doing so, INTERACT is able to expand the motion tree along rele-
vant regions, enabling rapid progress toward achieving the goal. In other words, rather
than blindly exploring the vast search space, INTERACT relies on action planning to
effectively guide the motion-tree expansion. Although this increases the running time for
action planning, it dramatically reduces the overall runtime of INTERACT.

18

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

5.2.4. Impact of the Workspace Decomposition

2

4

6

8

10

12

14

m
e
a
n
 r

u
n
ti
m

e
 [
s
]

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t3
workspace decomposition

prob.(13)

prob.(14)

prob.(15)

INTERACT INTERACT INTERACT
[fdss-1] [fdss-2] [sat]

(a) results on runtime

120

160

200

240

280

320

360

m
e
a
n
 s

o
lu

ti
o
n
 l
e
n
g
th

 [
m

]

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

prob.(13)

prob.(14)

prob.(15)

INTERACT INTERACT INTERACT
[fdss-1] [fdss-2] [sat]

workspace decomposition

(b) results on solution length

Figure 11. Runtime and solution-length results when varying the average triangle area in the workspace decom-
position. The workspace decompositions t1, . . . , t5 correspond to triangulations where the average triangle area

is 0.008%, 0.017%, 0.035%, 0.05%, and 0.08% of the overall workspace area, respectively.

Fig. 11 shows the impact of the workspace decomposition on the overall performance
of INTERACT. These results are obtained by varying the average triangle area in the
workspace decomposition. The default triangulation, used in all other experiments, is
t3 where the average triangle area is 0.035% of the total workspace area. Referring to
Fig. 11, when the decomposition is too fine-grained, the running time increases since it
becomes computationally more expensive to compute path(D, r, a) which is used in the
estimation of cost(Γ〈q,r〉,a) (Eqn. 11). Another reason is that the partition of the motion-
tree into groups Γ〈q,r〉 also becomes too fine-grained so it loses its effectiveness. At the
other end, there is also a runtime increase when the partition is coarse-grained since
fewer region groups are created, and, thus, it becomes difficult to find alternative routes
along which to expand the motion tree. Nevertheless, the results show that INTERACT
works well for a wide range of workspace decompositions. This makes it easier to find a
suitable workspace decomposition when considering a new problem instance.

When comparing the solution lengths, as shown in Fig. 11(b), INTERACT tends to
produce shorter solutions when using fine-grained workspace decompositions. In such
cases, path(D, r, a) provides a more accurate estimate cost(Γ〈q,r〉,a) (Eqn. 11).

5.2.5. Impact of the Selection Penalty Factor

2

4

6

8

10

12

14

16

18

m
e
a
n
 r

u
n
ti
m

e
 [
s
]

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

prob.(13)
prob.(14)
prob.(15)

INTERACT INTERACT INTERACT
[fdss-1] [fdss-2] [sat]

selection penalty factor

120

160

200

240

280

320

360

m
e
a
n
 s

o
lu

ti
o
n
 l
e
n
g
th

 [
m

]

b1 b2 b3 b4 b5 b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

prob.(13)

prob.(14)

prob.(15)

INTERACT INTERACT INTERACT
[fdss-1] [fdss-2] [sat]

selection penalty factor

b1 b2 b3 b4 b5

1.05 1.5 2 4 8

Figure 12. Runtime and solution-length results when varying the selection penalty factor, β (Section 4.1).

Fig. 12 shows the impact of the selection penalty factor, β, which is used by INTERACT
to counterbalance the greediness of the selection process toward groups associated with

19

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

low-cost action plans (Section 4.1). As β approaches 1, the runtime increases since IN-
TERACT becomes too greedy. The runtime also increases when β becomes large since
such values reduce the impact of the PDDL planner. The results show, however, that
INTERACT works well for a wide range of values. When starting with a new prob-
lem, we recommend using β = 1.5. This was the default value used in the experiments.
When comparing the solution lengths, the variation is small since β does not affect the
action-plan costs.

6. Discussion

This paper presented an effective approach to plan collision-free and dynamically-feasible
motion trajectories that enable the robot to satisfy task specifications given in PDDL.
The key aspect of INTERACT was the tight coupling of sampling-based motion planning
with action planning. Indeed, action plans guided the motion-tree expansion, while the
latter provided information to adjust the action costs based on the progress made. The
interplay among the planning layers is essential to ensure that the search does not become
stuck seeking to follow what could be an infeasible action plan. The partition of the
motion tree into equivalence classes allowed INTERACT to selectively explore the vast
high-dimensional search space, focusing first on the most promising leads. The workspace
decomposition facilitated the tree expansion by providing sequences of regions along
which to expand the motion tree in order to reach the locations associated with the
current action being explored. Experimental results showed the efficiency of the approach.
Applying INTERACT in a 3D environment would require a 3D decomposition of the
workspace, which can be obtained by using an octree or some other subdivision grid.

A direction for future work is to enhance the action planner to leverage previous so-
lutions to similar problems. In fact, during the course of one run, INTERACT invokes
the action planner multiple times, using different initial states. It may be possible to use
the previous searches to prune the current search. Another direction is to extend the
approach to a team of robots working cooperatively to accomplish a common task. This
would require the development of appropriate procedures to assign subtasks to robots
while ensuring coordination and effective load balancing. Theoretical analysis can focus
on showing probabilistic completeness. This can be achieved by showing that the pro-
posed framework systematically searches the space of discrete actions and continuous
motions. Starting from the initial state, the feasible actions will eventually be imple-
mented by the sampling-based motion planning, and as a result the reachable discrete
successor states will be eventually reached. The theoretical analysis could also shed light
into algorithmic components that can be further improved.

INTERACT also opens up venues for a closer integration with knowledge representa-
tion and reasoning. As an example, in a search-and-rescue scenario, additional predicates
can be used to classify people found by the robot based on their age, e.g., child, adult,
elderly, and their physical and psychological condition. Rules can then be used to define
appropriate robot behaviors based on this semantic information, such as aiming to in-
crease safety by avoiding cluttered paths or moving newly found people along previously
explored paths.

Funding

This work is supported by NSF IIS-1449505, NSF IIS-1548406, and NSF ACI-1440581.

20

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Supplemental material

The supplemental material contains several videos showing solutions obtained by the
proposed approach for various problem instances.

References

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1-2),
5–33.

Botea, A., Enzenberger, M., Müller, M., & Schaeffer, J. (2005). Macro-FF: Improving ai planning
with automatically learned macro-operators. Journal of Artificial Intelligence Research,
24 (1), 581–621.

Branicky, M. S. (1995). Universal computation and other capabilities of continuous and hybrid
systems. Theoretical Computer Science, 138 (1), 67–100.

Cambon, S., Alami, R., & Gravot, F. (2009). A hybrid approach to intricate motion, manipulation
and task planning. International Journal of Robotics Research, 28 (1), 104–126.

Cheng, P., Frazzoli, E., & LaValle, S. (2008). Improving the performance of sampling-based
motion planning with symmetry-based gap reduction. IEEE Transactions on Robotics,
24 (2), 488–494.

Choi, J., & Amir, E. (2009). Combining planning and motion planning. In Ieee international
conference on robotics and automation (pp. 238–244).

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S.
(2005). Principles of robot motion: Theory, algorithms, and implementations. MIT Press.

Coles, A., & Coles, A. (2011). LPRPG-P: Relaxed plan heuristics for planning with preferences.
In International conference on automated planning and scheduling (Vol. 11, pp. 26–33).
Freiburg, Germany.

Şucan, I. A., & Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex
dynamics. IEEE Transactions on Robotics, 28 (1), 116–131.

de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. H. (2008). Computational geometry:
Algorithms and applications (3rd ed.). Springer-Verlag.

de Silva, L., Pandey, A. K., & Alami, R. (2013). An interface for interleaved symbolic-geometric
planning and backtracking. In Ieee/rsj international conference on intelligent robots and
systems (pp. 232–239).

Devaurs, D., Simeon, T., & Cortés, J. (2013). Enhancing the transition-based rrt to deal with
complex cost spaces. In Ieee international conference on robotics and automation (pp.
4120–4125).

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2012). Semantic attach-
ments for domain-independent planning systems. In Towards service robots for everyday
environments (pp. 99–115). Springer.

Eppe, M., & Bhatt, M. (2013). Narrative based postdictive reasoning for cognitive robotics. In
International symposium on logical formalizations of commonsense reasoning.

Erdem, E., Aker, E., & Patoglu, V. (2012). Answer set programming for collaborative housekeep-
ing robotics: representation, reasoning, and execution. Intelligent Service Robotics, 5 (4),
275–291.

Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., & Uras, T. (2011). Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for robotic
manipulation. In Ieee international conference on robotics and automation (p. 4575-4581).

Fikes, R., & Nilsson, N. (1971). Strips: a new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 2 (3-4), 189-208.

Gaschler, A., Petrick, R. P., Giuliani, M., Rickert, M., Knoll, A., et al. (2013). KVP: A knowl-
edge of volumes approach to robot task planning. In Ieee/rsj international conference on
intelligent robots and systems (pp. 202–208).

21

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26 (1), 191–246. Retrieved from http://www.fast-downward.org/

Hertle, A., Dornhege, C., Keller, T., & Nebel, B. (2012). Planning with semantic attachments:
An object-oriented view. In European conference on artificial intelligence (Vol. 242, pp.
402–407).

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. J. of Artificial Intelligence Research, 14 , 253–302.

Hsu, D., Kindel, R., Latombe, J. C., & Rock, S. (2002). Randomized kinodynamic motion
planning with moving obstacles. International Journal of Robotics Research, 21 (3), 233–
255.

Kaelbling, L., & Lozano-Pérez, T. (2011). Hierarchical task and motion planning in the now. In
Ieee international conference on robotics and automation (pp. 1470–1477).

Kavraki, L. E., Švestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12 (4), 566-580.

Keller, H. (1992). Numerical methods for two-point boundary-value problems. New York, NY:
Dover.

Ladd, A. M., & Kavraki, L. E. (2005). Motion planning in the presence of drift, underactuation
and discrete system changes. In Robotics: Science and systems (p. 233-241). Boston, MA.

Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., & Karlsson, L. (2014). Efficiently combining
task and motion planning using geometric constraints. International Journal of Robotics
Research.

LaValle, S. M. (2011). Motion planning: The essentials. IEEE Robotics & Automation Magazine,
18 (1), 79-89.

LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International
Journal of Robotics Research, 20 (5), 378–400.

Le, D., & Plaku, E. (2014). Guiding sampling-based tree search for motion planning with
dynamics via probabilistic roadmap abstractions. In Ieee/rsj international conference on
intelligent robots and systems (pp. 212–217).

Marthi, B., Russell, S., & Wolfe, J. (2007). Angelic semantics for high-level actions. In Interna-
tional conference on automated planning and scheduling. Providence, RI.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., . . . Wilkins, D.
(1998). PDDL–the planning domain definition language (Tech. Rep. No. CVC TR-98-
003/DCS TR-1165). New Haven, CT: Yale Center for Computational Vision and Control.

McMahon, J., & Plaku, E. (2014). Sampling-based tree search with discrete abstractions for
motion planning with dynamics and temporal logic. In Ieee/rsj international conference
on intelligent robots and systems (pp. 3726–3733).

Nakhost, H., & Müller, M. (2012). A theoretical framework for studying random walk planning.
In Symposium on combinatorial search (pp. 57–64). Niagara Falls, Canada.

Pednault, E. P. D. (1994). ADL and the state-transition model of action. Journal of Logic
Computation, 4 (5), 467-512.

Plaku, E. (2013). Robot motion planning with dynamics as hybrid search. In Aaai conference
on artificial intelligence. (1415–1421)

Plaku, E. (2015). Region-guided and sampling-based tree search for motion planning with
dynamics. IEEE Transactions on Robotics, 31 , 723–735.

Plaku, E., & Hager, G. D. (2010). Sampling-based motion and symbolic action planning with
geometric and differential constraints. In IEEE International Conference on Robotics and
Automation (pp. 5002–5008).

Plaku, E., Kavraki, L. E., & Vardi, M. Y. (2010). Motion planning with dynamics by a synergistic
combination of layers of planning. IEEE Transactions on Robotics, 26 (3), 469–482.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime planning
with landmarks. Journal of Artificial Intelligence Research, 39 (1), 127–177.

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artificial Intelligence, 193 , 45–86.
Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. Com-

22

February 12, 2016 Journal of Experimental & Theoretical Artificial Intelligence JETAI14

putational Geometry: Theory and Applications, 22 (1-3), 21–74.
Sievers, S., Ortlieb, M., & Helmert, M. (2012). Efficient implementation of pattern database

heuristics for classical planning. In Symposium on combinatorial search (pp. 105–111).
Niagara Falls, Canada.

Wells, A., & Plaku, E. (2015). Adaptive sampling-based motion planning for mobile robots with
differential constraints. In Lncs towards autonomous robotic systems (pp. 283–295).

Wolfe, J., Marthi, B., & Russell, S. (2010). Combined task and motion planning for mobile
manipulation. In International conference on automated planning and scheduling (pp.
254–258). Toronto, Canada.

23

