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Abstract— This paper focuses on motion-planning problems
for high-dimensional mobile robots with nonlinear dynamics
operating in complex environments. It is motivated by a recent
framework that combines sampling-based motion planning
in the state space with discrete search over a workspace
decomposition. Building on this line of work, the premise of
this paper is that the computational efficiency can be signif-
icantly improved by tightly coupling sampling-based motion
planning with probabilistic roadmap abstractions instead of
workspace decompositions. Probabilistic roadmap abstractions
are constructed over a low-dimensional configuration space
obtained by considering relaxed and simplified representations
of the robot model and its feasible motions. By capturing
the connectivity of the free configuration space, roadmap
abstractions provide the framework with promising suggestions
of how to effectively expand the sampling-based search in
the full state space. Experiments with high-dimensional robot
models, nonlinear dynamics, and nonholonomic constraints
show significant computational speedups over related work.

I. INTRODUCTION

In motion planning, the objective is to plan motions that
enable a robot to move from an initial state to a goal region
while avoiding collisions with obstacles. While initially
considered as a geometric problem [1], motion planning
for complex robotic systems requires taking into account
constraints imposed by the underlying dynamics in order to
facilitate execution of the planned motions.

Robot dynamics describe how the robot moves as a result
of applying external control inputs. As dynamics constrain
the feasible motions, for example, by bounding the velocity,
turning radius, directions of motions, it is difficult to find
controls that result in both feasible motions that satisfy the
physical constraints imposed by the dynamics and collision-
free motions that drive the robot to the goal. The differential
equations ṡ = f(s, u), which model the robot dynamics, are
often high dimensional and nonlinear. Additional challenges
arise when incorporating more accurate simulations, such as
those obtained by physics-based engines, e.g., Gazebo, Bullet
[2], ODE [3], which model general rigid body dynamics.

To effectively plan collision-free and dynamically-feasible
motions for mobile robots with complex dynamics, this paper
builds on sampling-based motion planning, which has shown
promise in solving challenging problems [4], [5]. To take
dynamics into account, sampling-based approaches typically
expand a motion tree, starting from the initial state, by
adding new collision-free and dynamically-feasible trajec-
tories as tree branches. RRT [6], [7] and other successful
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approaches have used nearest neighbors, probability distri-
butions, reachable sets, transition costs, principal-component
analysis, flood-filling behaviors, machine learning, and other
techniques to guide the motion-tree expansion [4].

Another line of sampling-based motion planners has fo-
cused on using decompositions to guide the tree expansion.
PDST [8] relies on subdivisions of a low-dimensional pro-
jection space to determine regions from which to expand
the motion tree. IST [9] extends PDST by using roadmaps
to compute heuristic costs for the cells in the subdivision.
KPIECE [10] imposes a grid on a low-dimension projection
and builds upon the notion of interior-exterior cells to guide
the tree expansion. fRRT [11] conducts an A* search on a
grid-based decomposition of the configuration space to bias
the sampling in RRT to grid cells with low cost.

Syclop [12] introduced a framework that tightly couples
sampling-based motion planning with discrete search over
a workspace decomposition. The work in [13] considered
different low-dimensional projections to employ within the
Syclop framework. Further improvements to Syclop to min-
imize its dependence on long guides were offered in [14],
which uses heuristic costs and partitions of the motion tree
into equivalent groups to guide the tree expansion.

Building on our prior work in the Syclop framework,
this paper shows that, when dealing with high-dimensional
motion-planning problems with complex dynamics, compu-
tational efficiency can be significantly improved by tightly
coupling sampling-based motion planning with probabilistic
roadmap abstractions instead of workspace decompositions.
This is motivated by the success of PRM [15]–[17] in solving
challenging path-planning problems by using sampling to
construct a roadmap that captures the global connectivity of
the underlying collision-free space (see [4], [5] for discus-
sions on PRM). However, PRM approaches have had limited
applicability in motion planning with dynamics since each
roadmap edge (si, sj) requires connecting the state si to sj
via a feasible trajectory that satisfies differential constraints
imposed by dynamics. Exact solutions to this two-point
boundary value problem are available only in limited cases,
while numerical solutions impose significant computational
cost, rendering roadmap construction impractical [18], [19].

To take advantage of the global exploration properties
of PRM while avoiding issues related to two-point bound-
ary value problems, the proposed approach constructs the
roadmap abstractions over a low-dimensional configuration
space obtained by considering simplified representations of
the robot model and its feasible motions. In this way, the
roadmap abstractions are not used to solve motion planning
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with dynamics but rather to solve a simplified problem that
can serve as a guide. By capturing the connectivity of the
free configuration space, the roadmap abstractions provide
the framework with more reliable suggestions than those
obtained by workspace decompositions of how to effectively
expand the motion tree toward the goal. In particular, the
proposed approach uses the roadmap abstractions to induce a
partition of the state space into equivalence classes. Heuristic
costs based on the shortest-path distance along the edges
of the roadmap abstraction are used to determine the fea-
sibility of expanding the motion tree from the equivalence
classes associated with the roadmap configurations. Heuristic
costs are combined with selection penalties to provide the
framework with the flexibility to discover new regions from
which to expand the motion tree. In this way, the framework
seeks to balance exploitation of the roadmap abstractions to
greedily expand the search toward the goal with methodical
exploration to discover alternative routes to the goal.

Experiments with models of a high-dimensional snake-
like robot, a physics-based ground vehicle, and an aerial
vehicle operating in complex environments demonstrate the
efficiency of the proposed approach. Results show significant
computational speedups when using roadmap abstractions in-
stead of workspace decompositions as well as when compar-
ing the proposed approach to other successful planners, e.g.,
RRT [6], [7], fRRT [11], PDST [8], IST [9], KPIECE [10].

II. PROBLEM FORMULATION

From a sampling-based motion-planning perspective, the
robot’s motions are encapsulated by a function

snew ← MOTION(s, u, dt),

where the new state snew is obtained by applying the input
control u for one time step dt starting at s. When dynamics
are described as differential equations ṡ = f(s, u), MOTION is
implemented using numerical integration. This work also in-
corporates physics-based engines, which implement MOTION

based on general rigid-body dynamics that take into account
the physical interactions of the robot with the environment.

A function VALID : S → {true, false} determines if a
state s ∈ S is valid, e.g., no collisions, all values are within
desired bounds. A function GOAL : S → {true, false}
determines if s ∈ S satisfies the motion-planning goal.

The objective is then to compute a control function ū :
[0, T ]→ U such that the trajectory ζ : [0, T ]→ obtained by
applying ū starting from the initial state sinit ∈ S is collision-
free and satisfies the motion-planning goal.

III. METHOD

The approach uses roadmap abstractions in a low-
dimensional configuration space to guide the expansion of
a motion tree in the state space. Pseudocode is provided in
Algorithm 1. The main steps are described below.

A. Roadmap Abstraction

1) Simplified Problem Representation: The approach
starts with a simplified representation of the overall motion-
planning problem, which is obtained by considering planning

Algorithm 1 Pseudocode for the proposed approach

1: C ← simplified problem in configuration space
2: RM = (VRM , ERM )← CONSTRUCTROADMAP(C)
3: (hcost(c1), . . . , hcost(cn))←HEURISTICCOSTS(RM)
4: [T , groupsT ]← CREATETREE(sinit)
5: while TIME < tmax and SOLVED = false do
6: groupT ,c ← SELECTGROUP(groupsT )
7: s← SELECTSTATE(groupT ,c)
8: for several steps do
9: u← CONTROLLER(s)

10: snew ← MOTION(s, u, dt)
11: if VALID(s) = true then break for loop
12: ADDVERTEX(T , snew, u, dt)
13: if GOAL(snew) = true then
14: return TRAJ(T , snew)
15: c← NearestCfgRM(snew)
16: if (groupT ,c ← FIND(groupsT , c)) = null then
17: groupT ,c ← NEWGROUP(c)
18: ADD(groupsT , groupT ,c)
19: ADD(groupT ,c, snew); s← snew

in a related low-dimensional configuration space C rather
than the full state space S. The representation in C could
correspond to simplified geometric models as well as less
constrained motions where the robot is free to translate and
rotate without taking into account differential constraints im-
posed by dynamics. Section IV-B provides some examples.

2) Roadmap Construction: The approach continues by
building a roadmap that aims to capture the connectivity of
the collision-free configuration space Cfree (Algorithm 1:2).
As in PRM [15], the roadmap is constructed by sam-
pling collision-free configurations and connecting neighbor-
ing configurations with collision-free paths. The collision-
free configurations and paths are represented as vertices and
edges in the roadmap graph RM = (VRM , ERM ).

Each collision-free configuration is generated by uniform
sampling, which samples a number of configurations at
random in C and adds to the roadmap only those configura-
tions that are not in collision. Roadmap edges are obtained
by attempting to connect each roadmap configuration to
several of its nearest neighbors according to a distance
metric ρ : C × C → R≥0. Good distance metrics over C
are generally easier to define than over S since the robot
motions are less constrained in C [20]. Since C is low
dimensional, the computation of nearest neighbors does not
present a bottleneck as efficient data structures that work
with any distance metric are available [21]. A path between
two neighboring configurations ci and cj is obtained by an
appropriate interpolation in C. Subdivision or incremental
collision checking is then used to determine whether the path
avoids collisions in which case it is added to the roadmap.

While in PRM roadmap cycles are generally avoided to
save computation time, as discussed in section III-B, they
are needed in the proposed approach to improve the heuristic
costs to the goal. Hence, path collision checking is performed
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even when ci and cj belong to the same roadmap component.
Since C is low dimensional, the increase in computation time
due to cycles is negligible. In fact, in the experiments in this
paper, the roadmap construction took less than a second.

In order to ensure that the start and goal configurations
belong to the same roadmap component, additional sampling
and edge connections need to be used when the initial
roadmap construction fails to connect the start and goal
configurations. One common approach is to repeatedly keep
adding a number of samples n and then attempting edge
connections until the initial and goal belong to the same
roadmap component. The approach is likely to succeed since
the roadmap is constructed over a simplified and relaxed
problem. If such problem is too difficult to solve, then there
is little hope that the original motion-planning problem with
dynamics can be solved efficiently.

B. Heuristic Costs based on the Roadmap Abstraction

The roadmap abstraction provides solutions to the simpli-
fied and relaxed motion-planning problem. These solutions
are used to construct heuristics that effectively guide the ex-
pansion of the motion tree toward the goal. In particular, for
a configuration c ∈ VRM , the heuristic cost h(c) is defined
as the length of the shortest path in RM = (VRM , ERM )
from c to the goal. The heuristic costs can be computed by
a single call to Dijkstra’s shortest path algorithm with the
goal configuration as the source (Algorithm 1:3).

C. Using the Roadmap Abstraction to Guide the Expansion

In the state space S, a motion tree T is rooted at the
initial state sinit and is incrementally expanded by adding
new collision-free and dynamically-feasible trajectories as
branches. The roadmap abstraction is used to group the
tree states according to their nearest roadmap configurations.
More specifically, a function cfg : S → C uses the relaxed
problem representation in the configuration space C to
provide a mapping from a state s ∈ S to the corresponding
configuration cfg(s). As shown in the examples provided in
Section IV-B, cfg(s) could correspond to the position and
orientation component of the state s.

Each roadmap configuration c ∈ VRM defines a group
groupT ,c = {s : s ∈ T ∧ c = NearestCfgRM(s)},

where NearestCfgRM(s) = argminc′∈VRM
ρ(cfg(s), c′). In

other words, the state s is associated with the roadmap
configuration closest to cfg(s) according to ρ.

This induces a partition of T into different groups, labeled
according to their nearest roadmap configuration, i.e.,

groupsT = {groupT ,c : c ∈ VRM ∧ |groupT ,c| > 0}.
Proceeding in an incremental fashion, each iteration consists
of (i) selecting a group groupT ,c from groupsT , and (ii) adding
a collision-free and dynamically-feasible trajectory from a
vertex associated with groupT ,c.

1) Selecting a Tree Group (Algorithm 1:6): A weight
w(groupT ,c) is associated with each group based on the
corresponding heuristic cost h(c) and the number of times
groupT ,c has been selected for expansions in the past, i.e.,

w(groupT ,c) = αNrSel(groupT ,c)/(ε+ h(c)),

where 0 < α < 1 and ε > 0 is used to avoid division by
zero in case h(c) = 0. The motion tree is then expanded from
the group with the maximum weight. Note that this scheme
gives preference to tree groups associated with low heuristic
costs. Since h(c) is based on the shortest-path distance in
the roadmap from c to the goal, it is estimated that progress
can be made in reaching the goal by expanding T from
vertices in groupT ,c. The term αNrSel(groupT ,c) serves as a
penalty factor to avoid becoming stuck when expansions
from groupT ,c are not feasible due to constraints imposed by
obstacles and robot dynamics. As an implementation note,
groupsT ,c is maintained as a maximum heap data structure
to allow efficient retrievals and updates.

2) Expanding from a Tree Group (Algorithm 1:7–19): The
motion tree T is expanded from groupT ,c by first selecting
a state s ∈ groupT ,c and then generating a collision-free
and dynamically-feasible trajectory starting at s. A target
configuration p is sampled and the closest state in group(T , c)
to p is selected for expansion, i.e.,

s = argmins′∈groupT ,c
ρ(p, cfg(s′)).

To promote expansions toward the goal, p is sampled near
roadmap configurations along the shortest path from c to
the goal. More specifically, recall that the shortest roadmap
path has already been computed by Dijkstra’s algorithm
during the computation of the heuristic costs (section III-
B). A roadmap configuration ci along this path is selected
uniformly at random and a target p is generated uniformly
at random inside a small ball centered at ci. To also promote
expansions in new directions, p is sampled at other times
uniformly at random from the entire configuration space C.
To combine these two strategies, with probability b (set to
0.85 in the experiments), p is generated according to the first
strategy and with probability 1− b according to the second.

A collision-free and dynamically-feasible trajectory is
generated from the selected state s by applying control inputs
u for several time steps, stopping when a collision is detected
or a maximum number of steps is exceeded. As it is common
in sampling-based motion planning, the control u is sampled
uniformly at random in order to expand T in new directions.
PID controllers can also be used, when available, to generate
a trajectory from s toward the sampled target p. Note that
exact steering is not required, which makes it easier to design
such controllers. Intermediate states along the generated
trajectory are added as new vertices to T . When a new state
snew is added to T , the corresponding tree group is also added
to groupsT if not already there (Algorithm 1:16–19). In this
way, the approach has the flexibility to expand the search
from new tree groups in future iterations.

IV. EXPERIMENTS AND RESULTS

A. Robot Models and Scenes

Experimental validation is provided using a physics-based
vehicle model, a high-dimensional snake-like robot model,
and an aerial-vehicle model operating in complex environ-
ments, as shown in Fig. 1.
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scene 1

scene 2

scene 3

Fig. 1. Robot models and scenes. Figures on the right show the roadmap abstraction. Roadmap configurations are color-coded based on their roadmap
distance to the goal (blue: far, red: near, scale provided at the top of the figure). Roadmap edges are shown in the case of scene 2, but not for the other
scenes as it clutters the figure. Figures better viewed in color and on screen. Videos showing solutions are provided as supplementary material.

1) Physics-based Vehicle Model: In the first scene, a
vehicle is required to drive over a bumpy terrain and avoid
numerous obstacles scattered throughout the environment in
order to reach the goal region. The vehicle is controlled by
setting the engine force and changing the steering wheel. The
physics-based engine, Bullet [2], is used to model the rigid
body dynamics and to compute the motions resulting from
applying these external forces.

2) Snake-Like Robot Model: In the second scene, a snake-
like robot model is required to move through numerous nar-
row passages and maneuver in tight spaces in order to reach

the goal region. This high-dimensional model with nonlinear
dynamics is obtained by attaching several trailers to a car that
pulls them as it moves. Specifically, the differential equations
of motion are as follows (adapted from [5, pp. 731]):

ẋ = v cos(θ0) cos(ψ) ẏ = v sin(θ0) sin(ψ)

θ̇0 = v sin(ψ)/L v̇ = a ψ̇ = ω

θ̇i = v
d (sin(θi−1)− sin(θ0))

∏i−1
j=1 cos(θj−1 − θj),

where x, y, θ0, v, ψ denote the position, orientation, velocity,
and steering angle of the car; θi denotes the orientation of
the i-th trailer; N denotes the number of trailers; L and d
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Fig. 2. Results of the comparisons. P[prm] refers to the proposed approach when using roadmap abstractions. Running time for P[prm] includes the
time used for roadmap construction, which constituted a negligible fraction of the overall time. The framework when using workspace decompositions is
referred to as P[ws]. Segments indicate one standard deviation.

denote the body and hitch lengths. The robot is controlled by
setting a (acceleration) and ω (steering rotational velocity).

3) Aerial-Vehicle Model: In the third scene, an aerial
vehicle is required to fly through several small openings
placed at different heights in order to reach the goal. The
differential equations of motion are defined as

ẋ = v cos(θ) cos(ψ) ẏ = v sin(θ) cos(ψ)

θ̇ = v sin(ψ)/L v̇ = a ψ̇ = ω ż = vz v̇z = az
where the new components z, vz, az express the position,
velocity, and acceleration along the z-axis, as the vehicle
flies parallel to the xy-plane.

B. Roadmap Abstractions used in the Experiments

In the case of the snake-like robot model, the roadmap is
constructed over SE(2), where a configuration is defined by
(x, y, θ0). Only the head link is considered. For the physics-
based vehicle, the relaxed robot model is again allowed to
freely translate and rotate. As this is a ground vehicle model,
the roadmap is also constructed over SE(2). For the aerial
vehicle, a configuration is defined by (x, y, z, θ).

In all cases, straight-line interpolations (1− t)qi + tqj are
used to generate each roadmap edge. Edge collision checking
is done by subdivision, as advocated in the literature [4,
Chapter 7]. The number of initial samples is set to n = 10000
and the number of neighbors is set to k = 10. Note that,
as described in Section III, an additional 5000 samples are
added to the roadmap when the initial roadmap construction
fails to connect the start and goal configurations (this is
repeated until start and goal are connected). Illustrations of
roadmap abstractions are provided in Fig. 1.

C. Methods used in the Comparisons

Experiments compare the approach when using sampling-
based motion planning in combination with roadmap ab-
stractions instead of workspace decompositions. When using
roadmaps, the approach is referred to as P[prm]. When
using workspace decompositions, it is referred to as P[ws].
The approach is also compared to other successful motion
planners, namely, RRT [6], [7], fRRT [11], PDST [8],
IST [9], KPIECE [10]. All the planners use the same code

base. Implementations of KPIECE and PDST are based on
OMPL [22]. Implementations of fRRT and IST follow the
technical descriptions in their respective papers. The RRT
implementation uses the connect version with goal bias.
Efficient data structures are used for nearest neighbors [21].

D. Problem Instances
Due to the probabilistic nature of sampling-based motion

planning, the computational efficiency of each approach on
a particular scene is based on results from 60 different runs,
where the i-th run uses the i-th query. Sixty different queries
are generated for each scene before hand and used by all the
planners. The five worst and the five best runs are discarded
to avoid the influence of outliers. Results report the average
time and standard deviation of the remaining runs. For the
first scene, queries are generated by placing the car and the
goal at random positions. For the second and third scenes,
the robot is placed at random on one end of the scene and
the goal is placed at random at the opposite end. Running
time for each run includes everything from reading the input
to reporting that a solution is found. Experiments are run
on an Intel Core i7 machine (CPU: 1.90GHz, RAM: 4GB)
using Ubuntu 13.04. Code is compiled with GNU g++-4.7.2.

E. Results
Fig. 2 provides a summary of the results. Results indicate

that the proposed approach performs significantly better than
the other planners used in the comparisons. Also, P[prm],
which refers to the proposed approach when using roadmap
abstractions, shows significant improvements over its coun-
terpart that uses workspace decompositions (referred to as
P[ws]). The reasons for these improvements come from the
fact that the roadmap abstractions more effectively guide
the motion-tree expansions as the roadmap uses a geometric
shape that more closely relates to the full robot model as op-
posed to just using a point. Moreover, the roadmap sampling
and edge connections help identify collision-free regions
from which the tree search can be expanded. By capturing the
connectivity of the underlying free configuration space, the
roadmap abstractions provide the planner with more reliable
suggestions of how to effectively reach the goal.
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Fig. 3. Impact of the roadmap on the overall computational efficiency of the proposed approach. Top figure shows the results when varying the number
of initial roadmap samples. Bottome figure shows the results when varying the number of nearest neighbors.

Fig. 3 shows the results when varying the number of
roadmap configurations and nearest neighbors. As the results
indicate, P[prm] performs well for a wide range of values.

V. DISCUSSION

This paper proposed using probabilistic roadmap abstrac-
tions in combination with sampling-based motion planning to
effectively plan collision-free and dynamically-feasible robot
motions to reach a given goal. Roadmap abstractions are con-
structed over a low-dimensional configuration space obtained
by considering relaxed and simplified representations of the
robot model and its underlying motions. By capturing the
connectivity of the corresponding free configuration space,
roadmap abstractions provide the approach with promising
suggestions of how to effectively expand the tree-based
search in the full state space of the robot.

The approach is geared toward high-dimensional motion-
planning problems for mobile robots with nonlinear dy-
namics. Experimental results showed significant computa-
tional speedups when using roadmap abstractions instead of
workspace decompositions as well as when comparing the
proposed approach to other successful motion planners.

The combination of roadmap abstractions in configuration
spaces with tree-based exploration of the state space opens up
new venues for research. In fact, roadmap planners have been
extensively improved over the years to handle increasingly
complex motion-planning problems in configuration spaces.
By taking advantage of this extensive body of literature, we
plan to improve the sampling and connection strategies used
in the roadmap construction to more effectively capture the
connectivity especially inside narrow passages.
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