
Historical Improvement Optimal Motion Planning with Model
Predictive Trajectory Optimization for On-road Autonomous Vehicle

Duong Le1, Zhichao Liu1,2, IEEE student member , Jingfu Jin1, Kai Zhang∗1, and Bin Zhang∗2, IEEE senior member

Abstract— This paper presents an efficient, robust, com-
fortable, and real-time motion planning framework for on-
road autonomous vehicles. This proposed framework aims
to enhance the performance of motion planning in complex
environments such as driving in the urban area. It uses a
path velocity decomposition method to separate the motion
planning problem into path planning and velocity planning. The
novelty lies in the use of Historical data in the SL coordinate in
the framework of a tree version of Rapidly-exploring Random
Graph (RRT*) technique in path planner, called HSL-RRT*,
which grows the path tree efficiently by the data from previous
planning cycle. The velocity planner uses a Nonlinear Model
Predictive Controller (NMPC) to generate optimal velocity
along the path generated from the path planner, taking account
of vehicle constraints and comfort. Analytic and simulation
results are presented to validate the approach, with a special
focus on the robustness and efficiency of the algorithm operating
in complex scenarios.

I. INTRODUCTION

Self-driving technology has been developing rapidly over
the last few years. Such technology offers great promising
and potential society benefits. A vital component of self-
driving technology is the ability to plan a safe, feasible, com-
fortable, and agile motion that enables vehicles to operate
safely and efficiently in traffic.

Motion planning for self-driving vehicles, however, con-
fronts significant challenges. Vehicle motion profiles are
governed by its underlying dynamics, which must meet the
physical constraints (e.g. minimum turning radius, bounding
velocity, acceleration and steering angle, etc.). Besides that,
comfort is taken into account for vehicle motion while en-
suring the safety and following the traffic rule (lane keeping,
velocity keeping, etc.). Moreover, motion planner for self-
driving vehicles need to have quick response to meet the
requirement of real-time applications.

A. Related Works

Three categories of motion planning approaches for au-
tonomous vehicles have been widely studied in both aca-
demics and industry: numerical optimization approaches,

1,2Zhichao Liu is with the Department of Electrical Engineering, Uni-
versity of South Carolina, Columbia, SC, and was with American Haval
Motor Technology, MI, USA

1 Duong Le and Jingfu Jin is with American Haval Motor Technology,
MI, USA

1 Kai Zhang was with American Haval Motor Technology, MI, USA. He
is now with Argo AI, PA, USA carlzhangk@gmail.com

2 Bin Zhang is with the department of Electrical Engineering, University
of South Carolina, Columbia, SC zhangbin@cec.sc.edu

sampling-based approaches, and path-velocity decomposition
approaches.

Numerical optimization approaches formulate the trajec-
tory generation problem as an optimization problem over
the state space to find the optimal trajectory. The methods of
gradient or conjugate gradient descending [1], [2], sequential
quadratic programming [3], dynamic programming [4], and
nonlinear methods [5] were applied to find an optimal
solution of a well-defined cost function. These approaches
have shown efficiency. However, the computation time may
significantly increase if the environment is complex, e.g., the
presence of multiple obstacles.

Sampling-based approaches take direct samples in the state
space to find a set of feasible trajectories and then select
the best trajectory based on a cost function. Deterministic
sampling-based approach, such as lattice search [6], [7],
constructs a discrete search space to find the optimal tra-
jectory. The main disadvantage of lattice search is that it
could not guarantee the completeness. Random sampling-
based approaches, such as Rapidly-exploring Random Tree
[8] and others [9]–[13], have successfully shown the ability
to plan a feasible trajectory. The disadvantages are that they
often rely on nearest neighbors, distance metrics, probability
distributions, and other factors to guide the search, as sur-
veyed in [14], [15]. Furthermore, the resulted trajectory is
usually jerky and needs further smoothing. A variant of RRT,
called RRT* [16], can guarantee the optimality. However,
the optimality depends on the processing time, which is not
available for an online planner.

Path velocity decomposition approaches decompose mo-
tion planning problem into path planning and velocity plan-
ning [7], [17]. The decomposition, thus, breaks down the
motion planning problem into two sub-problems with lower
dimensionality for the efficiency. The path planning problem
generates a kinematically feasible path for the vehicle to
follow. After a path is generated, the velocity planning
generates a speed profile along the path.

Other path planning approaches include graph search
methods [18]–[20], and incremental search path planning
[8]. However, the path planned from these approaches is
jerky and not optimal. Lattice search [21], on the other
hand, heavily depends on the grid size, and has lower
flexibility in planning. To get a smooth path, a numerical
optimization process is often used [7], [17]. However, the
optimization is sensitive to the number of constraints and
cannot guarantee the processing time. For velocity planner,

978-1-7281-4878-6/19/$31.00 ©2019 IEEE 5223

it is often considered as an optimization problem that takes
account of various criteria (obstacle avoidance, comfort, fuel
consumption, behavior preference, etc.) [7]. The limitation
of this approach is that it often does not consider vehicle
dynamic and constraints, which may leads to infeasible tra-
jectories. Some efforts [17] use Model Predictive Controller
to overcome this limitation.

B. Contributions

Fig. 1. Overview of our framework

This paper presents an online motion planner framework
using the path-velocity decomposition approach to effec-
tively plan trajectories for on-road autonomous vehicles.
Fig.1 shows the framework architecture overview. In this
framework, an RRT* method in SL coordinate using His-
torical planning data, denoted as HSL-RRT* is proposed
as the path planner. It can effectively find an optimal path
by using historical planning data. After the optimal path
is obtained, a velocity planner is applied to generate a
trajectory for an autonomous vehicle. A Nonlinear Model
Predictive Controller (NMPC) is then used to generate an
optimal velocity profile to follow the generated optimal
path. The NMPC allows us to take into account of vehicle
model along with various motion criteria (path tracking,
obstacle avoidance, the uncertainty related to the dynamic
obstacle predictions, comfort, safety, etc.). Experiments and
comparisons demonstrate that our proposed framework is
able to handle complex scenarios. Our approach has the
following contributions:

• A novel motion planning framework provides effec-
tiveness, robustness, flexibility and feasibility to handle
complex scenarios.

• The SL coordinate dissolves the complex geometry of
the road. Combined with a sampling-based approach
like RRT*, the exploration in SL coordinate is much
faster than the one in Cartesian coordinate.

• Using data from the previous cycle combined with
RRT* technique, HSL-RRT* is able to compute an
optimal path within a limited processing time.

• Comparing with lattice search, which depends on grid
resolution to find a solution, our path planning approach
is more robust in term of completeness and optimality.

• A NMPC is used to satisfy the requirements of flexibil-
ity, feasibility, and comfort.

II. PRELIMINARIES

A. Architecture Overview

Data collected from the vehicle sensors are fed to per-
ception and localization modules, which provides necessary
information about vehicle surrounding environments such as

the vehicle’s current pose, routing information, and obstacle
prediction. Also, a High Definition (HD) map is available to
provide data of drivable region and a reference line of the
driving lane.

As the focus of this paper is on the motion planning, it is
assumed that the all the data fed to motion planning module
are reliable. With these, this paper proposes a motion planner
framework based on path-velocity decomposition approach
to generate a safe and smooth trajectory for the vehicle
control module.

B. Vehicle Model

Consider a vehicle in a two-dimensional workspace W ⊂
R2 with a specific orientation θ ∈ T w.r.t. the world
coordinate frame. Then the configuration of the vehicle
is represented as q = [x, y, θ]T ∈ SE(2). The vehicle
cannot slip in a lateral direction due to the nonholonomic
constraints ẋ sin(θ) − ẏ cos(θ) = 0. Hence, the vehicle’s
motion can be described by the following nonholonomic
kinematic equations

q̇(t) =

ẋ(t)
ẏ(t)

θ̇(t)

 =

cos(θ(t)) 0
sin(θ(t)) 0

0 1

[v(t)
w(t)

]
(1)

where v(t) and w(t) represent the linear and angular veloc-
ities of the vehicle, respectively.

C. SL coordinate

From sensor data and HD map, a reference line is gen-
erated. The reference line also contains information about
traffic regulation and obstacles. From the reference line, an
SL coordinate is constructed by using the Frenet coordinate.
S represents the distance along the tangential direction of
the lane, or the longitudinal distance. Correspondingly, L
represents the distance perpendicular to the s-direction, or
the lateral distance. The ego vehicle and its surrounding
environment are projected to an SL coordinate constructed
by the reference line.

III. PATH PLANNER

In this section, we present a path planner in SL coordinate
called HSL-RRT*. Our approach generates a curvature-
continuous path subject to the directives of the behavior plan-
ner and conforms to user preferences. HSL-RRT* algorithm
is provided in Algorithm 1.

Algorithm 1 Pseudocode of path planner

1: W ← FRAMEPROJECTTOSLFRAME()
2: T ← INITIALIZETREE(ninit)
3: for nh ∈ H do
4: EXTENDPATHTREE(nh)
5: while TERMINALCONDITION() = false do
6: nsample ← {null, null, null,HUGE V ALUE}
7: nsample.cfg ← SAMPLEPATHNODE(W)
8: T ← EXTENDPATHTREE(nsample)
9: path← GETPATH(T)

10: H ← AddPathHistory(path)
11: return path

5224

HSL-RRT* starts by projecting ego vehicle, obsta-
cles in the SL coordinate to construct a work-space
W (Algorithm 1:1). A path tree T is initialized with
root node ninit at ego vehicle’s initial configuration
{sinit, linit, dlinit, ddlinit, dddlinit}. The previous planning
data H is used to extend the tree T which serves as a
guidance for tree T to grow (Algorithm 1:3-4). The detail
of using previous planning data will be discussed in the
following section. The algorithm continues with an iterative
process. In each iteration, a random node nsample is sampled
in W . A tree expansion process (Algorithm 1:5-8) will
grow the tree T by connecting nsample to T . After each
iteration, the tree T gradually improves and grows along the
S direction in the SL coordinate. This process is repeated
until a terminal condition is met. Depending on the planner
objective, a path is derived from the path tree (Algorithm
1:9). The solution path is saved as H for the next planning
cycle (Algorithm 1:10) and is fed to speed planner to
generate a smooth trajectory for the controller module to
control vehicle’s maneuver. Fig.2 shows an interplay of path
planner in two consecutive planning cycles. In the following,
details about the main component of path planning will be
provided.

(a)

(b)

(c)

(d)

Fig. 2. HSL-RRT* finds a path to navigate complex environment in 2
consecutive planning cycles. In this figure, blue box is the vehicle, green
box are obstacles, the blue dots define the unsafe area around obstacles,
black dots are the sampling nodes, the black curves show how two sampling
nodes are connected. (a) path tree of the first planning cycle, where blue
line is the solution of the first planning cycle, (b) red dots are the solution
nodes from previous planning cycle which carried to second planning cycle
(c) add previous planning solution to the tree of the second planning cycle,
(d) path tree of the second planning cycle, where blue line is the solution
of the second planning cycle.

A. SL projection (Algorithm 1:1)

Objects, in Cartesian space, are described with location
and heading angle (x, y, θ), with addition for the ego vehicle,
the curvature and the derivative of curvature (k, dk). Then,
objects are projected to SL coordinates {s, l, dl, ddl, dddl},
which present the state, lateral and lateral derivatives. The
SL projection is based on a Cartesian − Frenet frame
transformation [6]. Both static and dynamic obstacles are
projected to SL coordinate. Static obstacles are projected di-
rectly to SL coordinate since the positions of static obstacles
are time invariant. On the other hand, dynamic obstacles are
described with an obstacle moving trajectory. The trajectory
of each dynamic obstacle is discretized into several trajectory
points with time, and then these points are projected to
SL coordinate. Considering planning trajectory from the
previous cycle, collision of the ego vehicle with trajectory
points of the dynamic obstacle at each time interval can be
estimated.

As shown in Fig.3, increment sampling-based approaches
expand poorly in Cartesian coordinate in case of curvy
road. The exploration often gets stuck since the lacking
of exploration guidance. As a result, the planner fails or
generates a poor solution, which can be solved by using
a decomposition as a guidance for the tree exploration
[13]. However, these often require extra processing time. By
utilizing the SL coordinate, the tree exploration can ignore
the geometry of the road, which provides a boost for the
exploration.

B. Add previous planning data (Algorithm 1:3-4)

After the initial path tree T , data from the previous
planning cycle is used to grow the path tree. For autonomous
vehicle path planning, the change in the environment of
each planning cycle is relatively small. By utilizing previous
planning data, the same environment will not be re-explored
again. Besides, the planner result will not change much
for each planning cycle. However, instead of using the
whole previous planning tree data, only the solution from
the last planning cycle is carried to the next cycle. Each
node nh from the previous solution H is added to the path
tree sequentially using the same process of tree expansion
Algorithm 2. The reason is, although the change in the
environment of each planning cycle is relatively small, each
node in the last planning tree still needs to be checked for
the new planning cycle to ensure a collision-free path. By
using RRT* technique in our approach, only the result from
the last planning cycle is sufficient. One remarkable feature
of RRT* is that [16] the solution quality only gets improved
after each iteration once a solution is found. The solution
from the last planning cycle can be considered as a solution
for the new cycle. Since the last planning solution as a guide
for RRT* grows a new tree, after each iteration, RRT* will
improve the last solution and expand from the last solution,
which results in a new extended path with better quality. This
approach also ensures that the solution path does not differ
much from the previous one, which reduces the processing
time for validation of the history.

5225

C. Tree expansion (Algorithm 1:5-8)

A motion tree T , represented as a directed acyclic graph,
is used to conduct a search for a path in W that sat-
isfies the planner’s goal. The path tree T is expanded
by adding a new node n. Each node n is described as
(cfg, parent, curve, cost) with cfg ← {s, l, dl, ddl, dddl}
is the node configuration in SL coordinate, parent is the
node parent, curve is the path from parent to n, and cost
is the cost of curve. The main expansion process algorithm
is provided in Algorithm 2.

In each iteration, a random node nsample is generated by
sampling a random cfg in W . The tree expansion starts
by selecting a set of neighbors Nneighs which are close
to nsample. A node nneigh ∈ Nneighs is selected to be
the parent of nsample if it has the best cost connection to
nsample and the curve connection from nneigh to nsample is
valid. Then nsample is added to path tree T as a child of
nneigh (Algorithm 1:a). If no valid parent is found, the tree
expansion starts over sampling. After adding nsample to T ,
a rewiring process checks if nsample could be the parent of
any nneigh ∈ Nneighs (Algorithm 1:b). The tree expansion
process is repeated until the terminal condition is met. Details
of selecting parent and rewiring process is provided in the
following.

The processes of parent selection and tree rewiring are the
two most promising features of RRT* and contribute to an
asymptotic optimal property of RRT*. Even with the best
parent selection and tree rewiring, the path tree T gradually
improves after each iteration [22]. Main components of tree
expansion are presented in the following.

Algorithm 2 Pseudocode for tree extension
EXTENDPATHTREE(nsample)

1: Nneighbors ← GETNEIGHBORS(T , nsample)
2: nsample ← CONNECTTOPARENT(Nneighbors, nsample)
3: if nsample.parent is null then
4: return
5: T ← INSERTPATHNODE(nsample, T)
6: T ← REWIRE(T , Nneighbors, nparent, nsample)

(a)CONNECTTOPARENT(Nneighbors, nsample)

1: for nneighbors ∈ Nneighbors do
2: path curve← GENERATECURVE(nneighbors, nsample)
3: if PATHVALID(path curve) is false then
4: continue
5: cost = nneighbors.cost+ PATHCOST(path curve)
6: if cost < nsample.cost then
7: nsample ← {nsample.cfg, nneighbors, path curve, cost}
8: return nsample

(b)REWIRE(T , Nneighbors, nsample)

1: for nneigh ∈ Nneighbors \ nsample.parent do
2: path curve← GENERATECURVE(nsample, nneighbors)
3: if PATHVALID(path curve) is false then
4: continue
5: new cost = nsample.cost+ PATHCOST(path curve)
6: if nneigh.cost > new cost then
7: nneigh.parent← nsample

8: nneigh.curve← path curve
9: nneigh.cost← new cost

1) Terminal condition (Algorithm 1:5): As mentioned
above, HSL-RRT* approach helps to improve the solution
quality over each iteration. However, for an online planner,
the processing time is always limited. Different termination
conditions can be implemented such as the process runs
in a limited number of iterations, or the quality of the
solution does not get further improvement within a number of
iterations. Note that by limiting the processing time of RRT*
with a terminal condition, the optimality does not guarantee
in each planning cycle. However, by using planning data
from the last planning cycle in Algorithm 1:3-4, the solution
is always an improvement to the previous planning cycle
solution and eventually become an optimal one.

2) Node sampling (Algorithm 1:6-7): A random node
nsample is generated by sampling a random configuration
cfg ← {s, l, dl, ddl, dddl} in the SL coordinate, where s is
sampled with a uniform distribution along the s-direction, l
is sampled with a normal distribution with a mean of 0 and
variance of half the lane width, and dl, ddl, dddl only matter
for the initial position of ego vehicle, so they are all set to
0 for the sampled nodes. This sampling strategy helps the
path tree T grow close to the reference line, resulting in the
trajectory of the center lane following.

Path tree in XY coordinate

Path tree in SL coordinate
Fig. 3. Path tree using sampling-based method in Cartesian coordinate vs
in SL coordinate

3) Neighbor selection (Algorithm 2:1): Neighbor selec-
tion can be based on the distance to nsample or number of
nearest neighbor of nsample.

4) Curve generation: A curve is used to connect two
nodes by quintic polynomial edges smoothly. A curve is
valid if it satisfies several criteria such as no collision, on
lane, and geometry shape (to ensure a feasible path). Curve
cost function is a combination of curve length, smoothness,
obstacle avoidance, and lane cost functions and is given as:

5226

Ctotal(curve) = w1Clength(curve) + w2Csmooth(curve)

+w3Cobs(curve) + w4Clane(curve)
(2)

where Clength is the length cost of the curve, Csmooth is the
smooth cost of the curve (the change in lateral direction of
the curve), Cobs is the obstacle cost of the curve, related to
how close the curve is to obstacles, Clane is the cost of curve
following and stay to the center of lane, and w1, w2, w3, w4

are weighting factors.

5) Path generation: After a terminal condition is met, a
path generator provides a solution. The path generation first
selects a node ngoal in path tree T as the goal node. The
criteria of goal node ngoal is that it satisfies the path planner
goal such as traveling at least a distance s in s-direction and
having the best cost. After a goal node ngoal is selected, a
set of node solution is obtained by travel back from the goal
node ngoal to the initial node ninit. Set of node solution is
saved as history H for the next planning cycle. A path is
generated by concatenating the curve of every node in the
set of node solution.

(a)

(b)

Fig. 4. Navigation through many obstacles. (a) Lattice path planner fails
to generate a path. (b) HSL-RRT* successfully finds a path using sampling-
based approach. Video comparison is provided at https://goo.gl/
1U7tu7

(a)

(b)

Fig. 5. Short lane change. (a) Lattice path planner fails to generate a
path for a short lane change. (b) HSL-RRT* successfully finds a path
using sampling-based approach. Video comparison is provided at https:
//goo.gl/Sc1mEk

IV. VELOCITY PLANNER

This section presents a NMPC controller, which is used
to generate a velocity profile for a reference path generated
from path planner in the previous section.

NMPC can be employed to formulate the velocity profile
generation problem. The vehicle model (1) is discretized with
interval ∆t such that

qk+1 = qk +

vk∆t cos(φk)
vk∆t sin(φk)

ωk∆t

 (3)

where φk = θk + 1
2ωk∆t and the index k represents the kth

step. Then, the model can be rewritten in a compact form as

qk+1 = fd(qk, uk) (4)

where fd() is a function of the vehicle state qk and the
control input uk = [vk, ωk]T .

A set of the vehicle state q and the control input u with
the given prediction horizon H can be defined as

q = {qk|qmin < qk < qmax}, k ∈ {1, · · · , H} (5)

and

u = {uk|umin < uk < umax}, k ∈ {1, · · · , H} (6)

where qmin and qmax denote the lower and upper bounds of
vehicle state, and umin and umax denote the lower and upper
bounds of control input to the vehicle. The path generated
by HSL-RRT* planner can be further smoothed by tracking
the path with NMPC algorithm with the vehicle model (3).
Thus, the NMPC optimization problem can be formulated as

min
u

J(q,u) (7)

subject to:
qk+1 = fd(qk, uk), k ∈ {1, · · · , H} (8a)
qmin < qk < qmax, k ∈ {1, · · · , H} (8b)
umin < uk < umax, k ∈ {1, · · · , H} (8c)

5227

Fig. 6. Pull over for emergency or ride-sharing. Video is provided at https://youtu.be/I8HMVVUcgMg

Fig. 7. Merge into traffic flow after pull-over for emergency or ride-sharing. Video is provided at https://youtu.be/thZBK7Gw82g

where J is an objective function to be determined sub-
sequently. Additional constraints (e.g., jerk, energy con-
sumption, etc.) can also be integrated into the optimization
problem.

The objective function for the path tracking error is given

by quadratic form as

J =
1

2
eTHPeH +

1

2

H−1∑
k=1

(eTkQek + uTkMuk) (9)

where P ∈ R3×3, Q ∈ R3×3, M ∈ R2×2 are the weighting
matrices, eH = qrH−q

p
H and ek = qrk−q

p
k, and qrk and qpk are

the kth reference and predicted points, respectively. A good

5228

reference of choosing the proper weighting matrices was
discussed in [23]. The velocity profile can then be obtained
by minimizing the objective function and the final smooth
trajectory can be fed to the low-level controller to follow.

V. RESULTS

A. Analysis on Path Generation

1) Completeness and robustness: Compared to a lattice
path planner, which heavily depends on grid size to generate
a solution, HSL-RRT* performs better in term of complete-
ness and robustness. Fig.4 and Fig.5 show that a lattice path
planner easily fails to generate a trajectory for a complex
scenario such as navigation through many obstacles, or short
lane change. For such scenarios, parameter tuning (change
the grid size) is required to get a solution in path planner.
On the contrary, HSL-RRT* does not requires such parameter
tuning. HSL-RRT* inherits the probabilistic completeness of
RRT approach, which could find a solution if there is any.

2) Computational performance: As mentioned above,
HSL-RRT* operates in the SL coordinate and provides a
boost for the tree exploration. Thus it provides better perfor-
mance in term of processing time than tradition planners
in the Cartesian coordinate. For instance, the processing
time for lattice planner depends on the grid size, while that
of some other path planning approaches are sensitive to
the number of variant/constraints, which cannot guarantee
real-time applications. In contrast, the processing time of
the proposed path planner can always be limited in a time
window. Although an optimal solution is not be found in
one single planning cycle, by carrying planning result from
the previous cycle to the next cycle, the path solution will
gradually converge to the optimal one. As a result, this
approach can guarantee that the path planner not only always
runs within a limited time window, but also provides an
optimal solution.

B. Simulation Results

Our proposed framework is implemented in Baidu Apollo
Open Autonomous Driving Platform. In comparison with
Apollo motion planner called Expectation Maximization
(EM) planner, our framework provide a more robust solution
which can handle more difficult scenarios where EM planner
fail such as navigate through many obstacles (Fig.4) or
short change lane (Fig.5). Two on-road situations are also
simulated and compared with EM planner.

Pull over for emergency or ride-sharing: Fig. 6 shows a
scenario in which the ego vehicle needs a pullover to the right
shoulder (represented in the rightest lane) and stops when an
emergency vehicle is approaching fast or ego vehicle needs
to pick up a passenger, where the ego vehicle is surrounded
by three moving obstacle vehicles in constant speed, and
seven static obstacle vehicles are parking in the right shoulder
with two free spaces. The ego vehicle first accelerates for the
oncoming gap, goes on the left lane in the S-shaped curve,
and then decelerates to a target velocity to fit into the gap in
the middle lane. After that, it accelerates to make a right lane
change into the middle lane and then decelerates to a target

velocity until the gap is open enough for pullover in the
shoulder. The ego vehicle accelerates and finally decelerates
to pull over on the shoulder.

Merge after the pull over: Fig. 7 shows a scenario in
which the ego vehicle needs to merge into the two-lane
road where there are three moving obstacle vehicles after
the emergency has passed or the passenger has been picked
up. The ego vehicle first accelerates for the oncoming gap,
goes onto the middle lane in the S-shaped curve, and then
decelerates to a target velocity for a second left lane change.
After entering the left lane, the ego vehicle accelerates to
make a right lane change into the middle lane.

Fig. 8. Example of a trajectory calculated for merging into traffic flow
after the emergency pull over. (κ̇) the path curvature rate of a trajectory.
The scenario is depicted in Fig. 7

Fig. 8 shows the derivative of the curvature of both
NMPC optimization and the optimization in EM planner. The
derivative of the curvature directly influences the comfort of
passengers. The comparison shows that, the NMPC optimiza-
tion has smaller and smoother derivative of curvature, which
will make the trajectory easier to follow and improve the
comfort of passengers.

For the real-time performance, the whole motion planning
framework should provide a trajectory in under 0.1 second.
To archive this performance, we set the tree expansion time
(as the terminal condition, described in Algorithm1:5) to 0.03
seconds, as discussed in section V-A.2, the algorithm can
always provide a solution in a limited time. The radius to
get the the nearest neighbors (Algorithm 2:1) is set to the
half of reference length. All the results in Figs. 6 and Figs.7
are generated from the same setting of the proposed planner.

VI. CONCLUSION

In this paper, a real-time motion planning framework
is proposed for on-road autonomous driving systems. The
framework enhances the robustness, efficiency, and comfort
for the autonomous driving vehicle and guarantees the opti-
mality, feasibility and the real-time processing. Simulations
show that the proposed framework can robustly handle
different dynamic on-road driving scenarios, some of which
are challenging even to human drivers. We are currently
implementing the approach in a test vehicle to gather real-
world validation results.

5229

REFERENCES

[1] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[2] ——, “Path planning for autonomous vehicles in unknown semi-
structured environments,” The International Journal of Robotics Re-
search, vol. 29, no. 5, pp. 485–501, 2010.

[3] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, et al., “Making
Bertha drive-an autonomous journey on a historic route.” IEEE Intell.
Transport. Syst. Mag., vol. 6, no. 2, pp. 8–20, 2014.

[4] T. Gu and J. M. Dolan, “On-road motion planning for autonomous
vehicles,” in International Conference on Intelligent Robotics and
Applications. Springer, 2012, pp. 588–597.

[5] D. Kogan and R. M. Murray, “Optimization-based navigation for the
DARPA grand challenge,” 2006.

[6] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét Frame,” 2010 IEEE
International Conference on Robotics and Automation, pp. 987–993,
2010.

[7] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu apollo EM motion planner,” arXiv preprint
arXiv:1807.08048, 2018.

[8] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[9] P. Cheng, E. Frazzoli, and S. LaValle, “Improving the performance of
sampling-based motion planning with symmetry-based gap reduction,”
IEEE Transactions on Robotics, vol. 24, no. 2, pp. 488–494, 2008.

[10] L. Jaillet, A. Yershova, S. M. La Valle, and T. Siméon, “Adaptive tun-
ing of the sampling domain for dynamic-domain RRTs,” in Intelligent
Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International
Conference on. IEEE, 2005, pp. 2851–2856.

[11] S. Kiesel, E. Burns, and W. Ruml, “Abstraction-guided sampling for
motion planning.” in SoCS, 2012.

[12] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
dynamics by a synergistic combination of layers of planning,” IEEE
Transactions on Robotics, vol. 26, no. 3, pp. 469–482, 2010.

[13] D. Le and E. Plaku, “Guiding sampling-based tree search for motion
planning with dynamics via probabilistic roadmap abstractions,” in
2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, September 14-18, 2014, 2014, pp. 212–
217.

[14] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of robot motion: theory,
algorithms, and implementation. MIT press, 2005.

[15] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[16] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, p. 2, 2010.

[17] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde, “Motion
planning for urban autonomous driving using bzier curves and mpc,”
11 2016, pp. 826–833.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[19] A. Stentz, “Optimal and efficient path planning for partially known
environments,” in Intelligent Unmanned Ground Vehicles. Springer,
1997, pp. 203–220.

[20] L. Kavraki, P. Svestka, and M. H. Overmars, Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. Un-
known Publisher, 1994, vol. 1994.

[21] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2009, pp. 1879–1884.

[22] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using RRT*
based approaches: a survey and future directions,” Int. J. Adv. Comput.
Sci. Appl, vol. 7, pp. 97–107, 2016.

[23] R. M. Murray, “Control and dynamical systems (Lecture 2 - LQR
Control),” University Lecture, pp. 2–3, 2006.

5230

